Table of Contents
ISRN Oncology
Volume 2012, Article ID 931301, 6 pages
http://dx.doi.org/10.5402/2012/931301
Review Article

Looking in the Mouth for Noninvasive Gene Expression-Based Methods to Detect Oral, Oropharyngeal, and Systemic Cancer

1Department of Oral Medicine and Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
2Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA

Received 12 July 2012; Accepted 12 September 2012

Academic Editors: R.-J. Bensadoun and C. V. Catapano

Copyright © 2012 Guy R. Adami and Alexander J. Adami. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. L. Patton, J. B. Epstein, and A. R. Kerr, “Adjunctive techniques for oral cancer examination and lesion diagnosis a systematic review of the literature,” Journal of the American Dental Association, vol. 139, no. 7, pp. 896–905, 2008. View at Google Scholar · View at Scopus
  2. G. R. Ogden, J. G. Cowpe, and A. J. Wight, “Oral exfoliative cytology: review of methods of assessment,” Journal of Oral Pathology and Medicine, vol. 26, no. 5, pp. 201–205, 1997. View at Google Scholar · View at Scopus
  3. C. Scheifele, A. M. Schmidt-Westhausen, T. Dietrich, and P. A. Reichart, “The sensitivity and specificity of the OralCDx technique: evaluation of 103 cases,” Oral Oncology, vol. 40, no. 8, pp. 824–828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Sciubba, “Improving detection of precancerous and cancerous oral lesions: computer-assisted analysis of the oral brush biopsy,” Journal of the American Dental Association, vol. 130, no. 10, pp. 1445–1457, 1999. View at Google Scholar · View at Scopus
  5. A. Acha, M. T. Ruesga, M. J. Rodríguez, M. A. Martínez De Pancorbo, and J. M. Aguirre, “Applications of the oral scraped (exfoliative) cytology in oral cancer and precancer,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 10, no. 2, pp. 95–102, 2005. View at Google Scholar · View at Scopus
  6. J. F. Bremmer, A. P. Graveland, A. Brink et al., “Screening for oral precancer with noninvasive genetic cytology,” Cancer Prevention Research, vol. 2, no. 2, pp. 128–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Spira, J. Beane, F. Schembri et al., “Noninvasive method for obtaining RNA from buccal mucosa epithelial cells for gene expression profiling,” Biotechniques, vol. 36, no. 3, pp. 484–487, 2004. View at Google Scholar · View at Scopus
  8. R. V. Smith, N. F. Schlecht, G. Childs, M. B. Prystowsky, and T. J. Belbin, “Pilot study of mucosal genetic differences in early smokers and nonsmokers,” Laryngoscope, vol. 116, no. 8, pp. 1375–1379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. D. Spivack, G. J. Hurteau, R. Jain et al., “Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells,” Cancer Research, vol. 64, no. 18, pp. 6805–6813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Driemel, H. Kosmehl, J. Rosenhahn et al., “Expression analysis of extracellular matrix components in brush biopsies of oral lesions,” Anticancer Research, vol. 27, no. 3, pp. 1565–1570, 2007. View at Google Scholar · View at Scopus
  11. M. Pérez-Sayáns, M. D. Reboiras-López, J. M. Somoza-Martín et al., “Measurement of ATP6V1C1 expression in brush cytology samples as a diagnostic and prognostic marker in oral squamous cell carcinoma,” Cancer Biology & Therapy, vol. 9, no. 12, pp. 1057–1064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Toyoshima, F. Koch, P. Kaemmerer, E. Vairaktaris, B. Al-Nawas, and W. Wagner, “Expression of cytokeratin 17 mRNA in oral squamous cell carcinoma cells obtained by brush biopsy: preliminary results,” Journal of Oral Pathology and Medicine, vol. 38, no. 6, pp. 530–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. Kupfer, V. L. White, M. C. Jenkins, and D. Burian, “Examining smoking-induced differential gene expression changes in buccal mucosa,” BMC Medical Genomics, vol. 3, article 24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sridhar, F. Schembri, J. Zeskind et al., “Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium,” BMC Genomics, vol. 9, article 259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Schwartz, S. Panda, C. Beam, L. E. Bach, and G. R. Adami, “RNA from brush oral cytology to measure squamous cell carcinoma gene expression,” Journal of Oral Pathology and Medicine, vol. 37, no. 2, pp. 70–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kolokythas, J. L. Schwartz, K. B. Pytynia et al., “Analysis of RNA from brush cytology detects changes in B2M, CYP1B1 and KRT17 levels with OSCC in tobacco users,” Oral Oncology, vol. 47, no. 6, pp. 532–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bardon, O. Ceder, G. Ekbohm, and H. Kollberg, “Salivary ribonuclease in cystic fibrosis and control subjects,” Acta Paediatrica Scandinavica, vol. 73, no. 2, pp. 263–266, 1984. View at Google Scholar · View at Scopus
  18. H. J. Eichel, N. Conger, and W. S. Chernick, “Acid and alkaline ribonucleases of human parotid, submaxillary, and whole saliva,” Archives of Biochemistry and Biophysics, vol. 107, no. 2, pp. 197–208, 1964. View at Google Scholar · View at Scopus
  19. S. Pradhan, M. N. Nagashri, K. S. Gopinath et al., “Expression profiling of CYP1B1 in oral squamous cell carcinoma: counterintuitive downregulation in tumors,” PLoS ONE, vol. 6, no. 11, Article ID e27914, 2011. View at Google Scholar
  20. C. H. Chen, C. Y. Su, C. Y. Chien et al., “Overexpression of β2-microglobulin is associated with poor survival in patients with oral cavity squamous cell carcinoma and contributes to oral cancer cell migration and invasion,” British Journal of Cancer, vol. 99, no. 9, pp. 1453–1461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. H. Yu, H. K. Kuo, and K. W. Chang, “The evolving transcriptome of head and neck squamous cell carcinoma: a systematic review,” PLoS ONE, vol. 3, no. 9, Article ID e3215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Ye, T. Yu, S. Temam et al., “Transcriptomic dissection of tongue squamous cell carcinoma,” BMC Genomics, vol. 9, article 69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Estilo, P. O-Charoenrat, S. Talbot et al., “Oral tongue cancer gene expression profiling: identification of novel potential prognosticators by oligonucleotide microarray analysis,” BMC Cancer, vol. 9, article 11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Choi and C. Chen, “Genetic expression profiles and biologic pathway alterations in head and neck squamous cell carcinoma,” Cancer, vol. 104, no. 6, pp. 1113–1128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Chen, E. Méndez, J. Houck et al., “Gene expression profiling identifies genes predictive of oral squamous cell carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 2152–2162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Reboiras-Lopez, M. Perez-Sayans, and J. M. Somoza-Martin, “Comparison of three sampling instruments, cytobrush, curette and oralCDx, for liquid-based cytology of the oral mucosa,” Biotechnic Histochemistry, vol. 87, no. 1, pp. 51–58, 2012. View at Google Scholar
  27. C. Palmer, M. Diehn, A. A. Alizadeh, and P. O. Brown, “Cell-type specific gene expression profiles of leukocytes in human peripheral blood,” BMC Genomics, vol. 7, article 115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Brinkmann and D. T. Wong, “Salivary transcriptome biomarkers in oral squamous cell cancer detection,” Advances in Clinical Chemistry, vol. 55, pp. 21–34, 2011. View at Google Scholar
  29. Y. Li, M. A. R. S. John, X. Zhou et al., “Salivary transcriptome diagnostics for oral cancer detection,” Clinical Cancer Research, vol. 10, no. 24, pp. 8442–8450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. O'Driscoll, “Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers,” Anticancer Research, vol. 27, no. 3, pp. 1257–1265, 2007. View at Google Scholar · View at Scopus
  31. G. Tzimagiorgis, E. Z. Michailidou, A. Kritis, A. K. Markopoulos, and S. Kouidou, “Recovering circulating extracellular or cell-free RNA from bodily fluids,” Cancer Epidemiology, vol. 35, no. 6, pp. 580–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Dietz, K. L. Johnson, H. C. Wick, D. W. Bianchi, and J. L. Maron, “Optimal Techniques for mRNA Extraction from Neonatal Salivary Supernatant,” Neonatology, vol. 101, no. 1, pp. 55–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Elashoff, H. Zhou, J. Reiss et al., “Prevalidation of salivary biomarkers for oral cancer detection,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 4, pp. 664–672, 2012. View at Google Scholar
  34. S. V. Kumar, G. J. Hurteau, and S. D. Spivack, “Validity of messenger RNA expression analyses of human saliva,” Clinical Cancer Research, vol. 12, no. 17, pp. 5033–5039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. H. Lee, J. H. Kim, H. Zhou et al., “Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma,” Journal of Molecular Medicine, vol. 90, no. 4, pp. 427–434, 2012. View at Google Scholar
  36. L. Zhang, J. J. Farrell, H. Zhou et al., “Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer,” Gastroenterology, vol. 138, no. 3, pp. 949–957.e7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Keller, J. Ridinger, A. K. Rupp, J. W. G. Janssen, and P. Altevogt, “Body fluid derived exosomes as a novel template for clinical diagnostics,” Journal of Translational Medicine, vol. 9, article 86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Lässer, V. Seyed Alikhani, K. Ekström et al., “Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages,” Journal of Translational Medicine, vol. 9, article 9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Palanisamy, S. Sharma, A. Deshpande, H. Zhou, J. Gimzewski, and D. T. Wong, “Nanostructural and transcriptomic analyses of human saliva derived exosomes,” PLoS ONE, vol. 5, no. 1, Article ID e8577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Lallemant, A. Evrard, C. Combescure et al., “Clinical relevance of nine transcriptional molecular markers for the diagnosis of head and neck squamous cell carcinoma in tissue and saliva rinse,” BMC Cancer, vol. 9, article 370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Brinkmann, D. A. Kastratovic, M. V. Dimitrijevic et al., “Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population,” Oral Oncology, vol. 47, no. 1, pp. 51–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. L. B. Rosas, W. Koch, M. D. G. Da Costa Carvalho et al., “Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients,” Cancer Research, vol. 61, no. 3, pp. 939–942, 2001. View at Google Scholar · View at Scopus
  43. C. T. Viet, R. C. Jordan, and B. L. Schmidt, “DNA promoter hypermethylation in saliva for the early diagnosis of oral cancer,” Journal of the California Dental Association, vol. 35, no. 12, pp. 844–849, 2007. View at Google Scholar · View at Scopus
  44. R. Guerrero-Preston, E. Soudry, J. Acero et al., “NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva,” Cancer Prevention Research, vol. 4, no. 7, pp. 1061–1072, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C. A. Righini, F. De Fraipont, J. F. Timsit et al., “Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence,” Clinical Cancer Research, vol. 13, no. 4, pp. 1179–1185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. T. Hennessey, M. F. Ochs, W. W. Mydlarz et al., “Promoter methylation in head and neck squamous cell carcinoma cell lines is significantly different than methylation in primary tumors and xenografts,” PLoS ONE, vol. 6, no. 5, Article ID e20584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. K. M. Pattani, Z. Zhang, S. Demokan et al., “Endothelin receptor type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy,” Cancer Prevention Research, vol. 3, no. 9, pp. 1093–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. T. Viet and B. L. Schmidt, “Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 12, pp. 3603–3611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Cardesa and A. Nadal, “Carcinoma of the head and neck in the HPV era,” Acta Dermatovenerol Alp Panonica Adriat, vol. 20, no. 3, pp. 161–173, 2011. View at Google Scholar
  50. C. Scully and J. Bagan, “Oral squamous cell carcinoma overview,” Oral Oncology, vol. 45, no. 4-5, pp. 301–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Bhutani, A. K. Pathak, Y. H. Fan et al., “Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs,” Cancer Prevention Research, vol. 1, no. 1, pp. 39–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Sidransky, “The oral cavity as a molecular mirror of lung carcinogenesis,” Cancer Prevention Research, vol. 1, no. 1, pp. 12–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Spira, “Upper airway gene expression in smokers: the mouth as a “window to the soul” of lung carcinogenesis?” Cancer Prevention Research, vol. 3, no. 3, pp. 255–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. W. A. Palmisano, K. K. Divine, G. Saccomanno et al., “Predicting lung cancer by detecting aberrant promoter methylation in sputum,” Cancer Research, vol. 60, no. 21, pp. 5954–5958, 2000. View at Google Scholar · View at Scopus
  55. W. Han, T. Wang, A. A. Reilly, S. M. Keller, and S. D. Spivack, “Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients,” Respiratory Research, vol. 10, article 86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. J. Liu, S. C. Lin, C. C. Yang et al., “Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma,” Head Neck, vol. 34, no. 2, pp. 219–224, 2012. View at Publisher · View at Google Scholar
  57. E. D. Wiklund, S. Gao, T. Hulf et al., “MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma,” PLoS ONE, vol. 6, no. 11, Article ID e27840, 2011. View at Google Scholar
  58. N. J. Park, H. Zhou, D. Elashoff et al., “Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection,” Clinical Cancer Research, vol. 15, no. 17, pp. 5473–5477, 2009. View at Publisher · View at Google Scholar · View at Scopus