Table of Contents
ISRN Polymer Science
Volume 2012 (2012), Article ID 942920, 26 pages
http://dx.doi.org/10.5402/2012/942920
Review Article

Electrosynthesis and Spectroscopic Characterization of Poly(o-Aminophenol) Film Electrodes

1Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina
2Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), CIC-CONICET La Plata, C.C. 49, B1897ZCA, B. Gonnet-Pcia, Buenos Aires, Argentina

Received 19 January 2012; Accepted 7 February 2012

Academic Editors: M. Karakisla, M. Sanopoulou, and B. G. Soares

Copyright © 2012 Ricardo Tucceri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Barbero, J. J. Silber, and L. Sereno, “Electrochemical properties of poly-ortho-aminophenol modified electrodes in aqueous acid solutions,” Journal of Electroanalytical Chemistry, vol. 291, no. 1-2, pp. 81–101, 1990. View at Google Scholar · View at Scopus
  2. T. Komura, Y. Ito, T. Yamaguti, and K. Takahasi, “Charge-transport processes at poly-o-aminophenol film electrodes: electron hopping accompanied by proton exchange,” Electrochimica Acta, vol. 43, no. 7, pp. 723–731, 1997. View at Google Scholar · View at Scopus
  3. R. I. Tucceri, “Surface resistance measurements on thin gold film electrodes coated with poly(o-aminophenol) films,” Journal of Electroanalytical Chemistry, vol. 505, no. 1-2, pp. 72–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Levin, V. Kondratiev, and V. Malev, “Charge transfer processes at poly-o-phenylenediamine and poly-o-aminophenol films,” Electrochimica Acta, vol. 50, no. 7-8, pp. 1573–1585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Rodriguez Nieto, R. I. Tucceri, and D. Posadas, “EIS detection of the partial oxidation of polymers derived from aryl amines,” Journal of Electroanalytical Chemistry, vol. 403, no. 1-2, pp. 241–244, 1996. View at Google Scholar · View at Scopus
  6. R. Tucceri, “The effect of high positive potentials on the different charge transport and charge transfer parameters of poly(o-amnophenol) modified electrodes. A study using cyclic voltammetry, steady-state rotating disc electrode voltammetry and AC impedance measurements,” Journal of New Materials for Electrochemical Systems, vol. 8, no. 4, pp. 305–317, 2005. View at Google Scholar · View at Scopus
  7. R. Tucceri, “A review about the surface resistance technique in electrochemistry,” Surface Science Reports, vol. 56, no. 3-4, pp. 85–157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Bonfranceschi, A. Pérez Córdoba, S. Keunchkarian, S. Zapata, and R. Tucceri, “Transport across poly(o-aminophenol) modified electrodes in contact with media containing redox active couples. A study using rotating disc electrode voltammetry,” Journal of Electroanalytical Chemistry, vol. 477, no. 1, pp. 1–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Tucceri, “A review about the charge conduction process at poly(o-aminopenol) film electrodes,” The Open Physical Chemistry Journal, vol. 4, pp. 62–77, 2010. View at Google Scholar
  10. C. Barbero, J. J. Silber, and L. Sereno, “Formation of a novel electroactive film by electropolymerization of ortho-aminophenol. Study of its chemical structure and formation mechanism. Electropolymerization of analogous compounds,” Journal of Electroanalytical Chemistry, vol. 263, no. 2, pp. 333–352, 1989. View at Google Scholar · View at Scopus
  11. R. Tucceri, “Practical applications of poly(o-aminopenol) film electrodes,” The Open Physical Chemistry Journal, vol. 4, pp. 45–61, 2010. View at Google Scholar
  12. J. M. Ortega, “Conducting potential range for poly(o-aminophenol),” Thin Solid Films, vol. 371, no. 1, pp. 28–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Ojani, J.-B. Raoof, and S. Fathi, “Poly(o-aminophenol) film prepared in the presence of sodium dodecyl sulphate: aplication for nickel-ion dispersion and the elecctrocatalytic oxidation of methanol and ethylene glycol,” Electrochimica Acta, vol. 54, pp. 2190–2196, 2009. View at Google Scholar
  14. D. Gonçalves, R. C. Faria, M. Yonashiro, and L. O. S. Bulhões, “Electrochemical oxidation of o-aminophenol in aqueous acidic medium: formation of film and soluble products,” Journal of Electroanalytical Chemistry, vol. 487, no. 2, pp. 90–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yang and Z. Lin, “Effects of surface oxide species on the electropolymerization of o-aminophenol on pretreated glassy carbon electrodes,” Synthetic Metals, vol. 78, no. 2, pp. 111–115, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kunimura, T. Ohsaka, and N. Oyama, “Preparation of thin polymeric films on electrode surfaces by electropolymerization of o-aminophenol,” Macromolecules, vol. 21, no. 4, pp. 894–900, 1988. View at Google Scholar · View at Scopus
  17. A. Q. Zhang, C. Q. Cui, Y. Z. Chen, and J. Y. Lee, “Synthesis and electrochromic properties of poly-o-aminophenol,” Journal of Electroanalytical Chemistry, vol. 373, no. 1-2, pp. 115–121, 1994. View at Google Scholar · View at Scopus
  18. A. Q. Zhang, C. Q. Cui, and J. Y. Lee, “Metal-polymer interactions in the Ag+/poly-o-aminophenol system,” Journal of Electroanalytical Chemistry, vol. 413, no. 1-2, pp. 143–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. A. U. H. A. Shah and R. Holze, “Poly(o-aminophenol) with two redox processes: a spectroelectrochemical study,” Journal of Electroanalytical Chemistry, vol. 597, no. 2, pp. 95–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Miras, A. Badano, M. M. Bruno, and C. Barbero, “Nitric oxide electrochemical sensors based on hybrid films of conducting polymers and metal phtalocyanines,” Portugaliae Electrochimica Acta, vol. 21, pp. 235–243, 2003. View at Google Scholar
  21. S. M. Golabi and A. Nozad, “Electrocatalytic oxidation of methanol at lower potentials on glassy carbon electrode modified by platinum and platinum alloys incorporated in poly(o-aminophenol) film,” Electroanalysis, vol. 15, no. 4, pp. 278–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Guenbour, A. Kacemi, A. Benbachir, and L. Aries, “Electropolymerization of 2-aminophenol. Electrochemical and spectroscopic studies,” Progress in Organic Coatings, vol. 38, no. 2, pp. 121–126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Pałys, M. Marzec, and J. Rogalski, “Poly-o-aminophenol as a laccase mediator and influence of the enzyme on the polymer electrodeposition,” Bioelectrochemistry, vol. 80, no. 1, pp. 43–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. J. Salavagione, J. Arias, P. Garcés, E. Morallón, C. Barbero, and J. L. Vázquez, “Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium,” Journal of Electroanalytical Chemistry, vol. 565, no. 2, pp. 375–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Q. Zhang, Y. Z. Chen, and Z. W. Tian, “Metal-polymer interaction in the Ag+/polyaniline system,” Acta Physico-Chimica Sinica, vol. 9, p. 523, 1993. View at Google Scholar
  26. J. Yano, H. Kawakami, S. Yamasaki, and Y. Kanno, “Cation Capturing Ability and the Potential Response of a Poly(o-aminophenol) Film Electrode to Dissolved Ferric Ions,” Journal of the Electrochemical Society, vol. 148, no. 2, pp. E61–E65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Yano, H. Kawakami, and S. Yamasaki, “Potential response of poly(o-aminophenol) film electrode to dissolved ferric ion,” Synthetic Metals, vol. 102, no. 1-3, p. 1335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kuraşun, B. Z. Ekinci, A. Paaşahan, and E. Ekinci, “Preparation and properties of amperometric uric acid sensor based on poly(2-aminophenol),” Journal of Applied Polymer Science, vol. 120, no. 1, pp. 406–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Tao, D. Pan, Y. Liu, L. Nie, and S. Yao, “An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron-cobalt hexacyanoferrate-modified gold electrode,” Analytical Biochemistry, vol. 338, no. 2, pp. 332–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Tao, Y. Liu, D. Pan, L. Nie, and S. Yao, “Study on the enhancement of catalytic activity for hemoglobin by quinhydrone in poly(o-aminophenol) film,” Bioelectrochemistry, vol. 65, no. 1, pp. 51–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Pan, J. Chen, L. Nie, W. Tao, and S. Yao, “Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at Prussian blue-modified platinum electrode,” Electrochimica Acta, vol. 49, no. 5, pp. 795–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Miland, A. J. Miranda Ordieres, P. Tuñón Blanco, M. R. Smyth, and C. Ó. Fágáin, “Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid,” Talanta, vol. 43, no. 5, pp. 785–796, 1996. View at Google Scholar · View at Scopus
  33. M. J. Lobo-Castañón, A. J. Miranda-Ordieres, and P. Tuñón-Blanco, “A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate,” Analytica Chimica Acta, vol. 346, no. 2, pp. 165–174, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Lobo, A. J. Miranda, J. M. López-Fonseca, and P. Tuñón, “Electrocatalytic detection of nicotinamide coenzymes by poly(o-aminophenol)—and poly(o-phenylenediamine)-modified carbon paste electrodes,” Analytica Chimica Acta, vol. 325, no. 1-2, pp. 33–42, 1996. View at Google Scholar · View at Scopus
  35. D. Pan, J. Chen, S. Yao, W. Tao, and L. Nie, “An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode,” Analytical Sciences, vol. 21, pp. 367–371, 2005. View at Google Scholar
  36. Z. Zhang, H. Liu, and J. Deng, “A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode,” Analytical Chemistry, vol. 68, no. 9, pp. 1632–1638, 1996. View at Google Scholar · View at Scopus
  37. J. Li and X. Lin, “Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 2898–2905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Scolari and R. Tucceri, “Some applications of nonconducting poly(o-aminophenol) films in Bioelectrochemistry and Electrocatalysis,” Micro and Nanosystems, vol. 3, pp. 115–130, 2011. View at Google Scholar
  39. R. I. Tucceri, “Specularity change on a thin gold film surface coated with poly(o-aminophenol) during the polymer redox conversion. The pH effect on the redox sites distribution at the metal | polymer interface,” Journal of Electroanalytical Chemistry, vol. 543, no. 1, pp. 61–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Ohsaka, S. Kunimura, and N. Oyama, “Electrode kinetics of poly (o-aminophenol) film prepared by electro-oxidative polymerization of o-aminophenol and its electrochromic properties,” Electrochimica Acta, vol. 33, no. 5, pp. 639–645, 1988. View at Google Scholar · View at Scopus
  41. H. J. Salavagione, J. Arias-Pardilla, J. M. Pérez et al., “Study of redox mechanism of poly(o-aminophenol) using in situ techniques: evidence of two redox processes,” Journal of Electroanalytical Chemistry, vol. 576, no. 1, pp. 139–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. I. Tucceri, C. Barbero, J. J. Silber, L. Sereno, and D. Posadas, “Spectroelectrochemical study of poly-o-aminophenol,” Electrochimica Acta, vol. 42, no. 6, pp. 919–927, 1997. View at Google Scholar · View at Scopus
  43. K. Jackowska, J. Bukowska, and A. Kudelski, “Electro-oxidation of o-aminophenol studied by cyclic voltammetry and surface enhanced Raman scattering (SERS),” Journal of Electroanalytical Chemistry, vol. 350, no. 1-2, pp. 177–187, 1993. View at Google Scholar · View at Scopus
  44. Y. Z. Chen, A. Q. Zhang, and Z. W. Tian, “Poly(o-aminophenol) studied by X-ray Photoelectron Spectroscopy,” Chemical Journal of Chinese Universities, vol. 12, p. 519, 1991. View at Google Scholar
  45. C. Barbero, J. Zerbino, L. Sereno, and D. Posadas, “Optical properties of electropolymerized orthoaminophenol,” Electrochimica Acta, vol. 32, no. 4, pp. 693–697, 1987. View at Google Scholar · View at Scopus
  46. K. Jackowska, J. Bukowska, and A. Kudelski, “Electro-oxidation of o-aminophenol studied by Surface Enhanced Raman Scattering (SERS),” Polish Journal of Chemistry, vol. 68, p. 141, 1994. View at Google Scholar