Table of Contents
ISRN Hematology
Volume 2012 (2012), Article ID 943089, 5 pages
http://dx.doi.org/10.5402/2012/943089
Research Article

Angiogenesis in Non-Hodgkin's Lymphoma: An Intercategory Comparison of Microvessel Density

1Department of Pathology, Hindu Rao Hospital, Malka Ganj, Delhi 110007, India
2Department of Pathology, Chacha Nehru Bal Chikitsalaya, Geeta Colony, Delhi 110031, India
3Department of Medicine, Hindu Rao Hospital, Malka Ganj, Delhi 110007, India

Received 29 November 2011; Accepted 10 January 2012

Academic Editor: E. Balleari

Copyright © 2012 Deepti Aggarwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Lee, J. J. Jung, and J. Kim, “Quantification of angiogenesis by a computerized image analysis system in renal cell carcinoma,” Analytical and Quantitative Cytology and Histology, vol. 22, no. 6, pp. 469–474, 2000. View at Google Scholar
  2. N. Weidner, “Current pathologic methods for measuring intratumor microvessel density within breast carcinoma and other solid tumors,” Breast Cancer Research and Treatment, vol. 36, no. 2, pp. 169–180, 1995. View at Google Scholar
  3. J. T. Reilly, J. R. Nash, M. J. Mackie, and B. A. McVerry, “Distribution of fibronectin and laminin in normal and pathological lymphoid tissue,” Journal of Clinical Pathology, vol. 38, no. 8, pp. 849–854, 1985. View at Google Scholar
  4. D. Ribatti, A. Vacca, B. Nico, M. Fanelli, L. Roncali, and F. Dammacco, “Angiogenesis spectrum in the stroma of B cell non Hodgkin’s lymphoma: an immunohistochemical and ultrastructural study,” European Journal of Haematology, vol. 56, no. 1-2, pp. 45–53, 1996. View at Publisher · View at Google Scholar
  5. D. Gratzinger, S. Zhao, R. J. Marinelli et al., “Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes,” The American Journal of Pathology, vol. 170, no. 4, pp. 1362–1369, 2007. View at Publisher · View at Google Scholar
  6. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar
  7. K. Ganjoo, C. An, M. Robertson et al., “Rituximab, Bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis,” Leukemia & Lymphoma, vol. 47, no. 6, pp. 998–1005, 2006. View at Publisher · View at Google Scholar
  8. N. L. Harris, E. S. Jaffe, H. Stein et al., “A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group,” Blood, vol. 84, no. 5, pp. 1361–1392, 1994. View at Google Scholar
  9. W. T. Bellamy, L. Richter, Y. Frutiger, and T. M. Grogan, “Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies,” Cancer Research, vol. 59, no. 3, pp. 728–733, 1999. View at Google Scholar
  10. B. Delahunt, P. B. Bettiwaite, and A. Thornton, “Prognostic significance of microscopic vascularity for clear cell renal carcinoma,” British Journal of Urology, vol. 80, no. 3, pp. 401–404, 1997. View at Publisher · View at Google Scholar
  11. F. J. Swan, W. S. Velasquez, S. Tucker et al., “A new serologic staging system for large-cell lymphomas based on initial beta 2-microglobulin and lactate dehydrogenase levels,” Journal of Clinical Oncology, vol. 7, no. 10, pp. 1518–1527, 1989. View at Google Scholar
  12. J. E. Wolf and W. R. Hubler, “Tumour angiogenic factor associated with subcutaneous lymphoma,” British Journal of Dermatology, vol. 92, no. 3, pp. 273–277, 1975. View at Google Scholar
  13. A. Tzankov, S. Heiss, S. Ebner et al., “Angiogenesis in nodal B cell lymphomas: a high throughput study,” Journal of Clinical Pathology, vol. 60, no. 5, pp. 476–482, 2007. View at Publisher · View at Google Scholar
  14. J. M. Jorgensen, F. B. Sorensen, K. Bendix et al., “Angiogenesis in non-Hodgkin's lymphoma: clinico-pathological correlations and prognostic significance in specific subtypes,” Leukemia & Lymphoma, vol. 48, no. 3, pp. 584–595, 2007. View at Publisher · View at Google Scholar
  15. J. Ruan, K. Hajjar, S. Rajji, and J. P. Leonard, “Angiogenesis and antiangiogenic therapy in non Hodgkin’s lymphoma,” Annals of Oncology, vol. 20, no. 3, pp. 413–424, 2009. View at Publisher · View at Google Scholar
  16. D. Gratzinger, S. Zhao, R. J. Tibshirani et al., “Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy,” Laboratory Investigation, vol. 88, no. 1, pp. 38–47, 2008. View at Publisher · View at Google Scholar
  17. B. Hazar, S. Paydas, S. Zorludemir, B. Sahin, and I. Tuncer, “Prognostic significance of microvessel density and vascular endothelial growth factor (VEGF) expression in non Hodgkin’s lymphomas,” Leukemia & Lymphoma, vol. 44, no. 12, pp. 2089–2093, 2003. View at Publisher · View at Google Scholar