Table of Contents
ISRN Oncology
Volume 2012, Article ID 946019, 17 pages
http://dx.doi.org/10.5402/2012/946019
Review Article

Inflammatory Malignant Fibrous Histiocytoma Associated with Leukemoid Reaction or Leukocytosis: A Comprehensive Review

Divisions of Hematology and Oncology and Allergy and Immunology, Department of Medicine, Nassau University Medical Center and North Shore- Long Island Jewish Health Care System, 2201 Hempstead Turnpike, East Meadow, NY 11554, USA

Received 6 June 2012; Accepted 1 July 2012

Academic Editors: S. Mandruzzato and J. Tovari

Copyright © 2012 Jorge Hurtado-Cordovi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kyriakos and R. L. Kempson, “Inflammatory fibrous histiocytoma, an aggressive and lethal lesion,” Cancer, vol. 37, no. 3, pp. 1584–1606, 1976. View at Google Scholar · View at Scopus
  2. D. S. Weiss and F. M. Enzinger, “Malignant fibrous histiocytoma: an analysis of 200 cases,” Cancer, vol. 41, no. 6, pp. 2250–2266, 1978. View at Google Scholar · View at Scopus
  3. Y. Oda, S. Tamiya, Y. Oshiro et al., “Reassessment and clinicopathological prognostic factors of malignant fibrous histiocytoma of soft parts,” Pathology International, vol. 52, no. 9, pp. 595–606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. C. Fletcher, “Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma,” American Journal of Surgical Pathology, vol. 16, no. 3, pp. 213–228, 1992. View at Google Scholar · View at Scopus
  5. M. D. Murphey, “World Health Organization classification of bone and soft tissue tumors: modifications and implications for radiologists,” Seminars in Musculoskeletal Radiology, vol. 11, no. 3, pp. 201–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Moran, S. Suster, G. Perino et al., “Malignant smooth muscle tumors presenting as mediastinal soft tissue masses. A clinicopathologic study of 10 cases,” Cancer, vol. 74, pp. 2251–2260, 1994. View at Google Scholar
  7. Wintrobe's Clinical Hematology, vol. 2, 10th edition, 1999.
  8. Hoffman Hematology Basic Principles and Practice, 5th edition, 2008.
  9. M. F. Melhem, A. L. Meisler, R. Saito, G. G. Finley, H. R. Hockman, and R. A. Koski, “Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction,” Blood, vol. 82, no. 7, pp. 2038–2044, 1993. View at Google Scholar · View at Scopus
  10. S. Serke, M. Brenner, R. Zimmermann, and H. Lobeck, “Malignant fibrous histiocytoma associated with peripheral blood eosinophilia. In vitro studies demonstrating tumor-derived eosinophilopoietic activity,” Oncology, vol. 43, no. 4, pp. 230–233, 1986. View at Google Scholar · View at Scopus
  11. J. R. Vilanova, J. Burgos-Bretones, R. Simon, and J. M. Rivera-Pomar, “Leukaemoid reaction and eosinophilia in ‘inflammatory fibrous histiocytoma’,” Virchows Archiv—Abteilung A Pathologische Anatomie, vol. 388, no. 2, pp. 237–243, 1980. View at Google Scholar · View at Scopus
  12. T. Kato, T. Kojima, T. Shimizu et al., “Inflammatory malignant fibrous histiocytoma of the gallbladder: report of a case,” Surgery Today, vol. 32, no. 1, pp. 81–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Asirwatham and J. W. Pickeren, “Inflammatory fibrous histiocytoma, case report,” Cancer, vol. 41, no. 4, pp. 1467–1471, 1978. View at Google Scholar · View at Scopus
  14. S. Ballesttri, L. Losi, M. Favali et al., “Hypervascular retroperitoneal mass in a patient with fever and leucocytosis-contrast-enhanced-ultrasonographic findings in a case of inflammatory malignant fibrous histiocytoma,” European Journal of Ultrasound, vol. 32, pp. 1–4, 2011. View at Google Scholar
  15. A. W. W. Roques, L. W. L. Horton, J. Leslie, and M. S. Buxton-Thomas, “Inflammatory fibrous histiocytoma in the left upper abdomen with a leukemoid blood picture,” Cancer, vol. 43, no. 5, pp. 1800–1804, 1979. View at Google Scholar · View at Scopus
  16. K. Takahashi, Y. Kimura, M. Naito, T. Yoshimura, H. Uchida, and S. Araki, “Inflammatory fibrous histiocytoma presenting leukemoid reaction,” Pathology Research and Practice, vol. 184, no. 5, pp. 498–506, 1989. View at Google Scholar · View at Scopus
  17. F. Algaba, I. Trias, and C. Castro, “Inflammatory malignant fibrous histiocytoma of the spermatic cord with eosinophilia,” Histopathology, vol. 14, no. 3, pp. 319–321, 1989. View at Google Scholar · View at Scopus
  18. M. Hisaoka, S. Tsuji, H. Hashimoto, T. Aoki, and K. Uriu, “Dedifferentiated liposarcoma with an inflammatory malignant fibrous histiocytoma-like component presenting a leukemoid reaction,” Pathology International, vol. 47, no. 9, pp. 642–646, 1997. View at Google Scholar · View at Scopus
  19. J. M. Ruiz Liso and J. R. Garcia, “Fibroushistiocitoma maligno “Inflammatorio” de cordon espermatico con infiltracion sobre un leiomioma inguinal. Presentacion de 1 caso con revision conceptual y de la literature,” Archivos Españoles de Urología, vol. 61, pp. 485–498, 2008. View at Google Scholar
  20. I. Matushansky, E. Hernando, N. D. Socci et al., “Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway,” The Journal of Clinical Investigation, vol. 117, no. 11, pp. 3248–3257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Matushansky, E. Charytonowicz, J. Mills, S. Siddiqi, T. Hricik, and C. Cordon-Cardo, “MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st century,” Expert Review of Anticancer Therapy, vol. 9, no. 8, pp. 1135–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Samejima, K. Takahashi, T. Omori, K. Okudela, M. Tajiri, and M. Masuda, “Inflammatory malignant fibrous histiocytoma of thymus origin,” Annals of Thoracic Surgery, vol. 89, no. 6, pp. 2003–2005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Murata, K. Makiyama, K. Miyazaki et al., “A case of inflammatory malignant fibrous histiocytoma of the colon,” Gastroenterologia Japonica, vol. 28, no. 4, pp. 554–563, 1993. View at Google Scholar · View at Scopus
  24. S. K. Singh, A. K. Mandal, M. M. Agarwal, and A. Das, “Primary renal inflammatory malignant fibrous histiocytoma: a diagnostic challenge,” International Journal of Urology, vol. 13, no. 7, pp. 1000–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-C. Poon, J. R. Durant, M. J. Norgard, and V. Y. H. Chang-Poon, “Inflammatory fibrous histiocytoma: an important variant of malignant fibrous histiocytoma highly responsive to chemotherapy,” Annals of Internal Medicine, vol. 97, no. 6, pp. 858–863, 1982. View at Google Scholar · View at Scopus
  26. J. Hurtado-Cordovi, B. Avezbakiyev, M. Frieri, L. Freedman, and W. Gebre, “Cutaneous inflammatory malignant fibrous histiocytoma presenting with a leukemoid reaction: a case report and review of the literature,” Case Report in Medicine, vol. 2012, Article ID 798629, 5 pages, 2012. View at Publisher · View at Google Scholar
  27. G. Virgili, S. M. Di Stasi, L. Storti, A. Orlandi, and G. Vespasiani, “Successful management of retroperitoneal malignant fibrous histiocytoma involving both kidneys,” Scandinavian Journal of Urology and Nephrology, vol. 34, no. 3, pp. 208–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Liarmakopoulos, P. Lampropoulos, A. Marinis et al., “Soft tissue paraspinal inflammatory malignant fibrous histiocytoma presenting as a lumbar abscess,” Case Reports in Oncology, vol. 4, no. 2, pp. 343–349, 2011. View at Google Scholar
  29. A. Ferlito, P. Nicolai, G. Recher, and S. Narne, “Primary laryngeal malignant fibrous histiocytoma: review of the literature and report of seven cases,” Laryngoscope, vol. 93, no. 10, pp. 1351–1358, 1983. View at Google Scholar · View at Scopus
  30. K. Shinjo, “Analysis of prognostic factors and chemotherapy of malignant fibrous histiocytoma of soft tissue: a preliminary report,” Japanese Journal of Clinical Oncology, vol. 24, no. 3, pp. 154–159, 1994. View at Google Scholar · View at Scopus
  31. R. G. Maki, “Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future,” The Oncologist, vol. 12, no. 8, pp. 999–1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Mayumi, T. Okuno, T. Ogawa et al., “Malignant fibrous histiocytoma of soft tissue producing granulocyte colony-stimulating factor,” Internal Medicine, vol. 40, no. 6, pp. 536–540, 2001. View at Google Scholar · View at Scopus
  33. F. Jardin, M. Vasse, M. Debled et al., “Intense paraneoplastic neutrophilic leukemoid reaction related to a G-CSF-secreting lung sarcoma,” American Journal of Hematology, vol. 80, no. 3, pp. 243–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Serafini, I. Borrello, and V. Bronte, “Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 53–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Goedegebuure, J. B. Mitchem, M. R. Porembka et al., “Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer,” Current Cancer Drug Targets, vol. 11, no. 6, pp. 734–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Meyer, A. Sevko, M. Ramacher et al., “Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 1711–1716, 2011. View at Google Scholar
  37. J. K. Morales, M. Kmieciak, K. L. Knutson, H. D. Bear, and M. H. Manjili, “GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells,” Breast Cancer Research and Treatment, vol. 123, no. 1, pp. 39–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Lechner, D. J. Liebertz, and A. L. Epstein, “Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells,” The Journal of Immunology, vol. 185, no. 4, pp. 2273–2284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Younos, M. Donkor, T. Hoke et al., “Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells,” International Immunopharmacology, vol. 11, no. 7, pp. 816–826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. L. Marigo, L. Dolcetti, P. Serafini, P. Zanovello, and V. Bronte, “Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells,” Immunological Reviews, vol. 222, no. 1, pp. 162–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. T. L. Whiteside, “Immune responses to malignancies,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S272–S283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. D. Waigh, Q. Hu, A. Miller et al., “Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism,” PLoS One, vol. 6, Article ID e27690, 2011. View at Google Scholar
  43. A. C. Ochoa, A. H. Zea, C. Hernandez, and P. C. Rodriguez, “Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 2, pp. 721–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Osaka, S. Hayakawa, Y. Yoshida, E. Sakurada, J. Ryu, and M. Sugitani, “Interleukin-8 producing malignant fibrous histiocytoma with prolonged fever,” Acta Histochemica et Cytochemica, vol. 39, no. 1, pp. 17–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Yamakawa, M. Fujimura, T. Hidaka, K. Yasoshima, and S. Saito, “Inflammatory malignant fibrous histiocytoma of the ovary producing interleukin-6: a case report,” Gynecologic Oncology, vol. 75, no. 3, pp. 484–489, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Yamamoto, T. Akisue, T. Marui et al., “Expression of transforming growth factor β isoforms and their receptors in malignant fibrous histiocytoma of soft tissues,” Clinical Cancer Research, vol. 10, no. 17, pp. 5804–5807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Wright, E. A. Turley, and A. H. Greenberg, “Transforming growth factor beta and fibroblast growth factor as promoters of tumor progression to malignancy,” Critical Reviews in Oncogenesis, vol. 4, no. 5, pp. 473–492, 1993. View at Google Scholar · View at Scopus
  48. T. Nakatani, T. Marui, T. Yamamoto et al., “Expression of stem cell factor and c-kit in human malignant fibrous histiocytoma cell line (TNMY1),” Anticancer Research, vol. 23, no. 3, pp. 2329–2333, 2003. View at Google Scholar · View at Scopus
  49. K. E. Langley, L. G. Bennett, J. Wypych et al., “Soluble stem cell factor in human serum,” Blood, vol. 81, no. 3, pp. 656–660, 1993. View at Google Scholar · View at Scopus
  50. T. Yamamoto, T. Nakatani, T. Marui et al., “Expression of stem cell factor and lack of c-kit expression in malignant fibrous histiocytoma of soft tissues,” Anticancer Research, vol. 23, no. 5, pp. 4305–4308, 2003. View at Google Scholar · View at Scopus
  51. K. Taniuchi, Y. Yamada, A. Nonomura, and K. Takehara, “Immunohistochemical analysis of platelet-derived growth factor and its receptors in fibrohistiocytic tumors,” Journal of Cutaneous Pathology, vol. 24, no. 7, pp. 393–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Abdiu, T. M. Walz, B. K. Nishikawa, S. Wingren, S. E. Larsson, and Å. Wasteson, “Human malignant fibrous histiocytomas in vitro: growth characteristics and their association with expression of mRNA for platelet-derived growth factor, transforming growth factor-alpha and their receptors,” European Journal of Cancer, vol. 34, no. 13, pp. 2094–2100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. G.-O. Ahn and J. M. Brown, “Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells,” Cancer Cell, vol. 13, no. 3, pp. 193–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Irsan, T. Akisue, H. Hara et al., “Imatinib mesylate inhibits tumorigenicity of malignant fibrous histiocytoma cells in vivo,” Anticancer Research, vol. 27, no. 1, pp. 423–430, 2007. View at Google Scholar · View at Scopus
  55. S. T. Mahmood, S. Agresta, C. Vigil et al., “Phase II study of sunitinib malate, a multitargeted tyrosine kinase inhibitor in patients with relapsed or refractory soft tissue sarcomas. Focus on three prevalent histologies: leiomyosarcoma, liposarcoma and malignant fibrous histiocytoma,” International Journal of Cancer, vol. 129, no. 8, pp. 1963–1969, 2011. View at Publisher · View at Google Scholar · View at Scopus