Table of Contents
ISRN Soil Science
Volume 2012 (2012), Article ID 946079, 13 pages
http://dx.doi.org/10.5402/2012/946079
Research Article

Microbial Enrichment of Vermicompost

1Faculty of Science, Vinayaka Missions University, Tamil Nadu, Salem 636 308, India
2Department of Biology, Gandhigram Rural Institute-Deemed University, Tamil Nadu, Gandhigram 624 301, India
3Department of Botany, Government Arts College, Tamil Nadu, Salem 636 007, India

Received 12 January 2012; Accepted 31 January 2012

Academic Editors: Z. He and W. Peijnenburg

Copyright © 2012 Kuppuraj Rajasekar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Edwards, Earthworm Ecology, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2004.
  2. A. A. Ansari, “Worm powered environmental biotechnology in organic waste management,” International Journal of Soil Science, vol. 6, no. 1, pp. 25–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Zaller, “Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties,” Scientia Horticulturae, vol. 112, no. 2, pp. 191–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Jayakumar, T. Sivakami, D. Ambika, and N. Karmegam, “Effect of turkey litter (Meleagris gallopavo L.) vermicompost on growth and yield characteristics of paddy, Oryza sativa (ADT-37),” African Journal of Biotechnology, vol. 10, no. 68, pp. 15295–15304, 2011. View at Publisher · View at Google Scholar
  5. R. K. Sinha, S. Agarwal, K. Chauhan, V. Chandran, and B. K. Soni, “Vermiculture technology: reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs,” Journal of Technology and Investment, vol. 1, no. 3, pp. 155–172, 2010. View at Publisher · View at Google Scholar
  6. M. Aira, F. Monroy, and J. Domínguez, “Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry,” Science of the Total Environment, vol. 385, no. 1–3, pp. 252–261, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. A. Barassi, R. J. Sueldo, C. M. Creus, L. E. Carrozzi, E. M. Casanovas, and M. A. Pereyra, “Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production,” Dynamic Soil, Dynamic Plant, vol. 1, no. 2, pp. 68–82, 2007. View at Google Scholar
  8. A. A. Abo-Baker and G. G. Mostafa, “Effect of bio-and chemical fertilizers on growth, sepals yield and chemical composition of Hibiscus sabdariffa at new reclaimed soil of South Valley area,” Asian Journal of Crop Science, vol. 3, no. 1, pp. 16–25, 2011. View at Publisher · View at Google Scholar
  9. V. V. Geetha and P. Balamurugan, “Organic seed pelleting in mustard,” Research Journal of Seed Science, vol. 4, no. 3, pp. 174–180, 2011. View at Publisher · View at Google Scholar
  10. O. P. Jangu and S. S. Sindhu, “Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.),” Microbiology Journal, vol. 1, no. 5, pp. 159–173, 2011. View at Publisher · View at Google Scholar
  11. J. P. Verma, J. Yadav, and K. N. Tiwari, “Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobactria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.),” International Journal of Agricultural Research, vol. 5, no. 3, pp. 148–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. I. Fahmi, H. H. Nagaty, R. A. Eissa, and M. M. Hassan, “Effects of salt stress on some nitrogen fixation parameters in faba bean,” Pakistan Journal of Biological Sciences, vol. 14, no. 6, pp. 385–391, 2011. View at Publisher · View at Google Scholar
  13. A. K. Singh, Gauri, R. P. Bhatt, and S. Pant, “Optimization and comparative study of the sugar waste for the growth of Rhizobium cells along with traditional laboratory media,” Research Journal of Microbiology, vol. 6, no. 9, pp. 715–723, 2011. View at Publisher · View at Google Scholar
  14. K. Raja Sekar and N. Karmegam, “Earthworm casts as an alternate carrier material for biofertilizers: assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum,” Scientia Horticulturae, vol. 124, no. 2, pp. 286–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Q. Arancon and C. A. Edwards, “The utilization of vermicomposts in horticulture and agriculture,” in Proceedings of Indo-US Workshop on Vermitechnology in Human Welfare, C. A. Edwards, R. Jayaraaj, and I. A. Jayraaj, Eds., pp. 98–108, Rohini Achagam, Coimbatore, India, 2009. View at Google Scholar
  16. P. Lavelle, “The structure of earthworm communities,” in Earthworm Ecology, J. E. Satchell, Ed., pp. 449–466, Chapman and Hall, London, UK, 1983. View at Google Scholar
  17. A. Singh and S. Sharma, “Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting,” Bioresource Technology, vol. 85, no. 2, pp. 107–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. S. Anilkumar, K. H. Nair, and A. K. Sherief, “Utilization of enriched coirpith-vermicompost in organic mediculture,” Plant Archives, vol. 7, pp. 617–620, 2007. View at Google Scholar
  19. K. Hashemimajd and A. Golchin, “The effect of iron-enriched vermicompost on growth and nutrition of tomato,” Journal of Agricultural Science and Technology, vol. 11, no. 5, pp. 613–621, 2009. View at Google Scholar · View at Scopus
  20. R. Kumar, D. Verma, B. L. Singh, U. Kumar, and Shweta, “Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting,” Bioresource Technology, vol. 101, no. 17, pp. 6707–6711, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. T. Daniel, B. Sivasankari, and M. Malathy, “Microbial and nutrient enhancement of Gliricidia sepium and Leucaena leucocephala leaf materials using Eisenia fetida,” in Vermitechnology II, N. Karmegam, Ed., vol. 4, no. 1, pp. 152–154, Dynamic Soil, Dynamic Plant, 2010. View at Google Scholar
  22. S. J. Veeresh, J. Narayana, and J. A. Teixeira da Silva, “Influence of Jeevamrutha (biodynamic formulation) on agro-industrial waste vermicomposting,” in Vermitechnology II, N. Karmegam, Ed., vol. 4, pp. 96–99, Dynamic Soil, Dynamic Plant, 2010. View at Google Scholar
  23. V. Kumar and K. P. Singh, “Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria,” Bioresource Technology, vol. 76, no. 2, pp. 173–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. P. K. Padmavathiamma, L. Y. Li, and U. R. Kumari, “An experimental study of vermi-biowaste composting for agricultural soil improvement,” Bioresource Technology, vol. 99, no. 6, pp. 1672–1681, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. Kumar and Shweta, “Enhancement of wood waste decomposition by microbial inoculation prior to vermicomposting,” Bioresource Technology, vol. 102, no. 2, pp. 1475–1480, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. H. Rasal, H. B. Kalbhor, V. V. Shingte, and P. L. Patil, “Development of technology for rapid composting and enrichment,” in Biofertilizers, Potentialities and Problems, S. P. Sen and P. Palit, Eds., pp. 255–258, Plant Physiology Forum and Naya Prakash, Calcutta, India, 1988. View at Google Scholar
  27. M. Prakash, M. Jayakumar, and N. Karmegam, “Physico-chemical characteristics and fungal flora in the casts of the earthworm, Perionyx ceylanensis Mich. Reared in Polyalthia longifolia leaf litter,” Journal of Applied Sciences Research, vol. 4, no. 1, pp. 53–57, 2008. View at Google Scholar
  28. S. Kaljeet, F. Keyeo, and H. G. Amir, “Influence of carrier materials and storage temperature on survivability of Rhizobial inoculant,” Asian Journal of Plant Sciences, vol. 10, no. 6, pp. 331–337, 2011. View at Publisher · View at Google Scholar
  29. A. V. Tiunov and S. Scheu, “Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization,” Oecologia, vol. 138, no. 1, pp. 83–90, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Domínguez, W. Parmelee, and C. A. Edwards, “Interactions between Eisenia andrei (Oligochaeta) and nematode populations during vermicomposting,” Pedobiologia, vol. 47, no. 1, pp. 53–60, 2003. View at Publisher · View at Google Scholar · View at Scopus