Table of Contents
ISRN Communications and Networking
Volume 2012 (2012), Article ID 951290, 9 pages
http://dx.doi.org/10.5402/2012/951290
Research Article

Gain Improvement of Dual Band Antenna Based on Complementary Rectangular Split-Ring Resonator

Millimeter Wave Laboratory, Electrical and Electronic Engineering Department, Public University of Navarra, Arrosadía Campus, 31006 Pamplona, Spain

Received 7 October 2011; Accepted 9 November 2011

Academic Editors: C. Luxey and J. K. Muppala

Copyright © 2012 Noelia Ortiz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968. View at Google Scholar
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000. View at Google Scholar · View at Scopus
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Google Scholar · View at Scopus
  4. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2572–2581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative, permeability and left-handed metamaterials,” Physical Review B, vol. 65, no. 14, pp. 1444401–1444406, 2002. View at Google Scholar
  6. F. Martín, F. Falcone, J. Bonache, T. Lopetegi, R. Marqués, and M. Sorolla, “Miniaturized coplanar waveguide stopband filters based on multiple tuned split rin resonators,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 511–513, 2003. View at Google Scholar
  7. F. Falcone, F. Martín, J. Bonache, R. Marqués, T. Lopetegi, and M. Sorolla, “Left handed coplanar waveguide band pass filters based on Bi-layer split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 1, pp. 10–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Falcone, T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and M. Sorolla, “Effective negative-ε stopband microstrip lines based on complementary split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Falcone, T. Lopetegi, M. A. G. Laso et al., “Babinet principle applied to metasurface and metamaterial design,” Physical Review Letters. In press.
  10. R. W. Ziolkowski and A. D. Kipple, “Application of double negative materials to increase the power radiated by electrically small antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2626–2640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Qureshi, M. A. Antoniades, and G. V. Eleftheriades, “A compact and low-profile metamaterial ring antenna with vertical polarization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, no. 1, pp. 333–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. K. Baee, G. Dadashzadeh, and F. G. Kharakhili, “Using of CSRR and its equivalent circuit model in size reduction of microstrip antenna,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '07), pp. 1–4, 2007. View at Publisher · View at Google Scholar
  13. Y. Lee, S. Tse, Y. Hao, and C. G. Parini, “A compact microstrip antenna with improved bandwidth using complementary split-ring resonator (CSRR) loading,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 5431–5434, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Meng, L. Mingzhi, and J. C. Tie, “Novel miniaturized dual band antenna design using complementary metamaterial,” in Proceedings of the International Workshop on Metamaterials (META '08), pp. 374–376, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, “Compact printed ultra-wideband monopole antenna with dual band-notched characteristics,” Electronics Letters, vol. 44, no. 12, pp. 710–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhang, Y. Q. Li, X. Chen, Y. Q. Fu, and N. C. Yuan, “Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, Article ID 5196779, pp. 3352–3355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-L. Wong, Compact and Broadband Microstrip Antennas, John Wiley & Sons, New York, NY, USA, 2002.
  18. J. D. Kraus and R.J. Marhefka, Antennas for all Applications, McGraw-Hill, New York, NY, USA, 3rd edition, 2002.
  19. F. Aznar, M. Gil, J. Bonache, and F. Martín, “Revising the equivalent circuit models of resonant-type metamaterial transmission lines,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT '08), pp. 323–326, June 2008. View at Publisher · View at Google Scholar · View at Scopus