Table of Contents
ISRN Nanotechnology
Volume 2013, Article ID 123838, 13 pages
http://dx.doi.org/10.1155/2013/123838
Research Article

Microscopic Studies of Various Sizes of Gold Nanoparticles and Their Cellular Localizations

1Center for NanoBiotechnology Research, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
2Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA

Received 21 May 2013; Accepted 30 June 2013

Academic Editors: D. R. Chen, B. Coasne, D. Galvão, S. Kundu, D. K. Sarker, D. Tsoukalas, and D. K. Yi

Copyright © 2013 Cemil Boyoglu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, 2008. View at Publisher · View at Google Scholar
  2. S. Dhar, E. Maheswara Reddy, A. Shiras, V. Pokharkar, and B. L. V. Prasad, “Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations,” Chemistry, vol. 14, no. 33, pp. 10244–10250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Joshi, D. R. Bhumkar, K. Joshi, V. Pokharkar, and M. Sastry, “Gold nanoparticles as carriers for efficient transmucosal insulin delivery,” Langmuir, vol. 22, no. 1, pp. 300–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll, and F. Höök, “Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection,” Langmuir, vol. 19, no. 24, pp. 10414–10419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar
  6. L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1596–1608, 2008. View at Publisher · View at Google Scholar
  7. H. Ringsdorf, B. Schlarb, and J. Venzmer, “Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembrnaes,” Angewandte Chemie, vol. 27, no. 1, pp. 113–158, 1988. View at Google Scholar · View at Scopus
  8. W. S. Cho, M. Cho, J. Jeong et al., “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicology and Applied Pharmacology, vol. 236, no. 1, pp. 16–24, 2009. View at Publisher · View at Google Scholar
  9. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Letters, vol. 6, no. 4, pp. 662–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” Journal of the American Chemical Society, vol. 126, no. 21, pp. 6520–6521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. D. Gibson, B. P. Khanal, and E. R. Zubarev, “Paclitaxel-functionalized gold nanoparticles,” Journal of the American Chemical Society, vol. 129, no. 37, pp. 11653–11661, 2007. View at Publisher · View at Google Scholar
  12. S. J. Yoon, S. Mallidi, J. M. Tam et al., “Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging,” Optics Letters, vol. 35, no. 22, pp. 3751–3753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Huang, W. Qian, P. K. Jain, and M. A. El-Sayed, “The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs,” Nano Letters, vol. 7, no. 10, pp. 3227–3234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Saikia, A. Murugadoss, P. J. Sarmah, A. Chattopadhyay, and P. K. Iyer, “Tuning the optical characteristics of poly(p-phenylenevinylene) by in situ Au nanoparticle generation,” Journal of Physical Chemistry B, vol. 114, no. 46, pp. 14821–14826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small, vol. 1, no. 3, pp. 325–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Letters, vol. 209, no. 2, pp. 171–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. W. H. de Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials, vol. 29, no. 12, pp. 1912–1919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kumar, H. Ma, X. Zhang et al., “Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment,” Biomaterials, vol. 33, no. 4, pp. 1180–1189, 2012. View at Publisher · View at Google Scholar
  19. R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chemical Society Reviews, vol. 37, no. 9, pp. 2028–2045, 2008. View at Publisher · View at Google Scholar
  20. S. Song, L. Wang, J. Li, C. Fan, and J. Zhao, “Aptamer-based biosensors,” TrAC Trends in Analytical Chemistry, vol. 27, no. 2, pp. 108–117, 2008. View at Publisher · View at Google Scholar
  21. M. Tsoli, H. Kuhn, W. Brandau, H. Esche, and G. Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small, vol. 1, no. 8-9, pp. 841–844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Uboldi, D. Bonacchi, G. Lorenzi et al., “Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441,” Particle and Fibre Toxicology, vol. 6, article 18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Berry, J. M. de la Fuente, M. Mullin, S. W. L. Chu, and A. S. G. Curtis, “Nuclear localization of HIV-1 tat functionalized gold nanoparticles,” IEEE Transactions on Nanobioscience, vol. 6, no. 4, pp. 262–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Oh, J. B. Delehanty, K. E. Sapsford et al., “Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size,” ACS Nano, vol. 5, no. 8, pp. 6434–6448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. S. Ghosh, C.-K. Kim, G. Han, N. S. Forbes, and V. M. Rotello, “Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles,” ACS Nano, vol. 2, no. 11, pp. 2213–2218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for infracellular gene regulation,” Science, vol. 312, no. 5776, pp. 1027–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Rout, J. D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B. T. Chait, “The yeast nuclear pore complex: composition, architecture, transport mechanism,” Journal of Cell Biology, vol. 148, no. 4, pp. 635–651, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Chen, F. Saeki, B. J. Wiley et al., “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Letters, vol. 5, no. 3, pp. 473–477, 2005. View at Publisher · View at Google Scholar
  29. S. Klein, S. Petersen, U. Taylor, D. Rath, and S. Barcikowski, “Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy,” Journal of Biomedical Optics, vol. 15, no. 3, article 036015, 2010. View at Publisher · View at Google Scholar
  30. C. Brandenberger, C. Mühlfeld, Z. Ali et al., “Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles,” Small, vol. 6, no. 15, pp. 1669–1678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis,” Journal of the American Chemical Society, vol. 132, no. 5, pp. 1517–1519, 2010. View at Publisher · View at Google Scholar
  32. A. Arnida, A. Malugin, and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” Journal of Applied Toxicology, vol. 30, no. 3, pp. 212–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” Journal of Nanobiotechnology, vol. 8, article 33, 2010. View at Publisher · View at Google Scholar
  34. H. Gao, W. Shi, and L. B. Freund, “Mechanics of receptor-mediated endocytosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9469–9474, 2005. View at Publisher · View at Google Scholar
  35. M. Raoof, Y. Mackeyev, M. A. Cheney, L. J. Wilson, and S. A. Curley, “Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex,” Biomaterials, vol. 33, no. 10, pp. 2952–2960, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. P. di Gianvincenzo, M. Marradi, O. M. Martínez-Avila, L. M. Bedoya, J. Alcamí, and S. Penadés, “Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 9, pp. 2718–2721, 2010. View at Publisher · View at Google Scholar
  37. I. Papp, C. Sieben, A. L. Sisson et al., “Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes,” ChemBioChem, vol. 12, no. 6, pp. 887–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Mustafa, F. Watanabe, W. Monroe et al., “Impact of gold nanoparticle concentration on their cellular uptake by MC3T3-E1 mouse osteoblastic cells as analyzed by transmission electron microscopy,” Journal of Nanomedicine & Nanotechnology, vol. 2, pp. 2–7, 2011. View at Google Scholar
  39. K. Unfried, C. Albrecht, L.-O. Klotz, A. von Mikecz, S. Grether-Beck, and R. P. F. Schins, “Cellular responses to nanoparticles: target structures and mechanisms,” Nanotoxicology, vol. 1, no. 1, pp. 52–71, 2007. View at Publisher · View at Google Scholar · View at Scopus