Table of Contents
ISRN Molecular Imaging
Volume 2013 (2013), Article ID 124603, 6 pages
http://dx.doi.org/10.1155/2013/124603
Research Article

Dosimetry and Therapeutic Ratios for Rhenium-186 HEDP

11st Radiology Department, National and Kapodistrian University of Athens, 115 28 Athens, Greece
2Radiation Physics Unit and Division of Nuclear Medicine, 1st Radiology Department, National and Kapodistrian University of Athens, 115 28 Athens, Greece

Received 7 February 2013; Accepted 11 March 2013

Academic Editors: E. Kresnik and D. Rattat

Copyright © 2013 Maria Argyrou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. F. Knapp Jr., S. Mirzadeh, and A. L. Beets, “Reactor production and processing of therapeutic radioisotopes for applications in nuclear medicine,” Journal of Radioanalytical and Nuclear Chemistry, vol. 205, no. 1, pp. 93–100, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. Manual For Reactor Produced Radioisotopes, International Atomic Energy Agency, 2003.
  3. M. E. Moustapha, G. J. Ehrhardt, C. J. Smith, L. P. Szajek, W. C. Eckelman, and S. S. Jurisson, “Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin,” Nuclear Medicine and Biology, vol. 33, no. 1, pp. 81–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Shigeta, H. Matsuoka, A. Osa et al., “Production method of no-carrier-added Re-186,” Journal of Radioanalytical and Nuclear Chemistry, vol. 205, pp. 85–92, 1996. View at Google Scholar
  5. S. Kinuya, K. Yokoyama, M. Izumo et al., “Feasibility of 186Re-RIT for treatment in an adjuvant setting of colon cancer,” Journal of Cancer Research and Clinical Oncology, vol. 129, pp. 392–396, 2003. View at Google Scholar
  6. G. E. H. Marnix, J. M. H. Klerk, and P. P. Rijk, “186Re-HEDP for metastatic bone pain in breast cancer patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, supplement 1, pp. 162–170, 2004. View at Google Scholar
  7. M. Andreou, G. Papanikolos, G. Vamvakas, N. Kotsakis, and M. Lyra, “Site-specific dosimetry of metastatic lesions in 186Re therapy,” in Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB '10), pp. 1–4, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. H. De Klerk, B. A. Zonnenberg, G. H. Blijham et al., “Treatment of metastatic bone pain using the bone seeking radiopharmaceutical Re-186-HEDP,” Anticancer Research, vol. 17, no. 3, pp. 1773–1777, 1997. View at Google Scholar · View at Scopus
  9. M. C. Graham, H. I. Scher, G. B. Liu et al., “Rhenium-186-labeled hydroxyethylidene diphosphonate dosimetry and dosing guidelines for the palliation of skeletal metastases from androgen- independent prostate cancer,” Clinical Cancer Research, vol. 5, no. 6, pp. 1307–1318, 1999. View at Google Scholar · View at Scopus
  10. M. Lyra, G. S. Limouris, A. P. Frantzis et al., “Patient specific biodistribution and dosimetry of radiopharmaceuticals in palliative bone therapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 26, no. 553, p. 1191, 1999. View at Google Scholar
  11. L. Bodei, M. Lam, C. Chiesa et al., “EANM procedure guideline for treatment of refractory metastatic bone pain,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 10, pp. 1934–1940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Sciuto, A. Festa, R. Pasqualoni et al., “Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients,” Breast Cancer Research and Treatment, vol. 66, no. 2, pp. 101–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dafermou, P. Colamussi, M. Giganti, C. Cittanti, M. Bestagno, and A. Piffanelli, “A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer,” European Journal of Nuclear Medicine, vol. 28, no. 7, pp. 788–798, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. H. de Klerk, A. D. van het Schip, B. A. Zonnenberg et al., “Phase 1 study of rhenium-186-HEDP in patients with bone metastases originating from breast cancer,” Journal of Nuclear Medicine, vol. 37, no. 2, pp. 244–249, 1996. View at Google Scholar · View at Scopus
  15. S. H. Han, J. M. H. de Klerk, S. Tan et al., “The placorhen study: a double-blind, placebo-controlled, randomized radionuclide study with 186re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases,” Journal of Nuclear Medicine, vol. 43, no. 9, pp. 1150–1156, 2002. View at Google Scholar · View at Scopus
  16. E. E. Englaro, L. E. Schroder, S. R. Thomas, C. C. Williams, and H. R. Maxon, “Safety and efficacy of repeated sequential administrations of Re-186(Sn)HEDP as palliative therapy for painful skeletal metastases. Initial case reports of two patients,” Clinical Nuclear Medicine, vol. 17, no. 1, pp. 41–44, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Lyra and P. Phinou, “Internal dosimetry in nuclear medicine: a summary of its development, applications and current limitations,” RSO Magazine, vol. 5, no. 2, pp. 17–30, 2000. View at Google Scholar
  18. A. Zafeirakis, A. Zissimopoulos, N. Baziotis, and G. S. Limouris, “Management of metastatic bone pain with repeated doses of rhenium 186-hedp in patients under therapy with zoledronic acid: a safe and additively effective practice,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 5, pp. 543–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Zafeirakis, A. Zissimopoulos, N. Baziotis, and G. S. Limouris, “Introduction of a new semi-quantitative index with predictive implications in patients with painful osseous metastases after 186Re-HEDP therapy,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 55, no. 1, pp. 91–102, 2011. View at Google Scholar · View at Scopus
  20. A. Zafeirakis, G. Papatheodorou, A. Arhontakis, A. Gouliamos, L. Vlahos, and G. S. Limouris, “Predictive implications of bone turnover markers after palliative treatment with 186Re-HEDP in hormone-refractory prostate cancer patients with painful osseous metastases,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 103–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Sciuto, A. Tofani, A. Festa, D. Giannarelli, R. Pasqualoni, and C. L. Maini, “Short- and long-term effects of 186Re-1,1-hydroxyethylidene diphosphonate in the treatment of painful bone metastases,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 647–654, 2000. View at Google Scholar · View at Scopus
  22. W. S. Snyder, M. R. Ford, G. G. Warner, and S. B. Watson, S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs, vol. 11 of Society of Nuclear Medicine, MIRD Pamphlet, New York, NY, USA, 1975.
  23. H. R. Maxon III, E. A. Deutsch, S. R. Thomas et al., “Re-186(Sn) HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies,” Radiology, vol. 166, no. 2, pp. 501–507, 1988. View at Google Scholar · View at Scopus
  24. R. C. Samaratunga, S. R. Thomas, J. D. Hinnefeld et al., “A Monte Carlo simulation model for radiation dose to metastatic skeletal tumor from rhenium-186(Sn)-HEDP,” Journal of Nuclear Medicine, vol. 36, no. 2, pp. 336–350, 1995. View at Google Scholar · View at Scopus
  25. W. E. Bolch, L. G. Bouchet, J. S. Robertson et al., “MIRD pamphlet no. 17: The dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level,” Journal of Nuclear Medicine, vol. 40, no. 1, pp. 11–36, 1999. View at Google Scholar · View at Scopus
  26. N. Petoussi-Henss, M. Zankl, U. Fill, and D. Regulla, “The GSF family of voxel phantoms,” Physics in Medicine and Biology, vol. 47, no. 1, pp. 89–106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Zankl, N. Petoussi-Henss, U. Fill, and D. Regulla, “The application of voxel phantoms to the internal dosimetry of radionuclides,” Radiation Protection Dosimetry, vol. 105, no. 1–4, pp. 539–548, 2003. View at Google Scholar · View at Scopus
  28. U. A. Fill, M. Zankl, N. Petoussi-Henss, M. Siebert, and D. Regulla, “Adult female voxel models of different stature and photon conversion coefficients for radiation protection,” Health Physics, vol. 86, no. 3, pp. 253–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Sgouros, M. Stabin, Y. Erdi et al., “Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components,” Medical Physics, vol. 27, no. 9, pp. 2150–2164, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zankl, K. F. Eckerman, and W. E. Bolch, “Voxel-based models representing the male and female ICRP reference adult—the skeleton,” Radiation Protection Dosimetry, vol. 127, no. 1–4, pp. 174–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. G. Stabin, “MIRDOSE: personal computer software for internal dose assessment in nuclear medicine,” Journal of Nuclear Medicine, vol. 37, no. 3, pp. 538–546, 1996. View at Google Scholar · View at Scopus
  32. M. G. Stabin and J. A. Siegel, “Physical models and dose factors for use in internal dose assessment,” Health Physics, vol. 85, no. 3, pp. 294–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. G. Stabin, R. B. Sparks, and E. Crowe, “OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine,” Journal of Nuclear Medicine, vol. 46, no. 6, pp. 1023–1027, 2005. View at Google Scholar · View at Scopus
  34. W. Brenner, W. U. Kampen, A. M. Kampen, and E. Henze, “Skeletal uptake and soft-tissue retention of 186Re-HEDP and 153Sm-EDTMP in patients with metastatic bone disease,” Journal of Nuclear Medicine, vol. 42, no. 2, pp. 230–236, 2001. View at Google Scholar · View at Scopus
  35. M. Lyra, G. Papanikolos, P. Phinou, A. P. Frantzis, J. Jordanou, and G. S. Limouris, “Rhenium-186-Hedp dosimetry and multiple bone metastases palliation therapy effects,” in Radionuclide Therapy for Oncology Current Status and Future Aspects, 2003. View at Google Scholar
  36. J. A. Siegel, S. R. Thomas, J. B. Stubbs et al., “MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates,” Journal of Nuclear Medicine, vol. 40, no. 2, pp. 37–61, 1999. View at Google Scholar · View at Scopus
  37. H. R. Maxon, L. E. Schroder, S. R. Thomas et al., “Re-186(Sn) HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer,” Radiology, vol. 176, no. 1, pp. 155–159, 1990. View at Google Scholar · View at Scopus
  38. G. M. Blake, M. A. Zivanovic, R. M. Blaquiere, D. R. Fine, A. J. McEwan, and D. M. Ackery, “Strontium-89 therapy: measurement of absorbed dose to skeletal metastases,” Journal of Nuclear Medicine, vol. 29, no. 4, pp. 549–557, 1988. View at Google Scholar · View at Scopus
  39. G. M. Blake, M. A. Zivanovic, and A. J. McEwan, “89Sr radionuclide therapy: dosimetry and haematological toxicity in two patients with metastasising prostatic carcinoma,” European Journal of Nuclear Medicine, vol. 13, no. 1, pp. 41–46, 1987. View at Google Scholar · View at Scopus
  40. N. Lagopati, G. Papanikolos, M. Sotiropoulos et al., “Individualized dosimetry methods and Monte Carlo simulation in Sm-153 EDTMP palliative treatment,” in Proceedings of the European Association of Nuclear Medicine Annual Congress, Barcelona, Spain, October, 2009.
  41. P. J. Cheetham and D. P. Petrylak, “Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation protection,” Oncology, vol. 26, no. 4, pp. 330–337, 2012. View at Google Scholar