Table of Contents
ISRN Stem Cells
Volume 2013, Article ID 138704, 9 pages
http://dx.doi.org/10.1155/2013/138704
Research Article

Low-Frequency Mechanical Stimulation Modulates Osteogenic Differentiation of C2C12 Cells

1Soft Tissue Biophysics Laboratory, Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, Canada H3A 0C5
2Faculty of Dentistry, McGill University, Montreal, QC, Canada H3A 0C5

Received 12 December 2012; Accepted 19 January 2013

Academic Editors: A. Chapel, C. Dong, S. M. Hwang, and B. Machalinski

Copyright © 2013 Ghazaleh Khayat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Urist, “Bone: formation by autoinduction,” Science, vol. 150, no. 3698, pp. 893–899, 1965. View at Google Scholar · View at Scopus
  2. D. D. Wang, R. Zeng, M. E. Yang et al., “Enhancement of bone formation by recombinant human bone morphogenetic protein-2/chitosan bone biomaterials,” Journal of Clinical Rehabilitative Tissue Engineering Research, vol. 15, no. 25, pp. 4583–4586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. R. Urist and B. S. Strates, “Bone morphogenetic protein,” Journal of Dental Research, vol. 50, no. 6, pp. 1392–1406, 1971. View at Google Scholar · View at Scopus
  4. H. M. Ryoo, M. H. Lee, and Y. J. Kim, “Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells,” Gene, vol. 366, no. 1, pp. 51–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Gersbach, R. E. Guldberg, and A. J. García, “In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts,” Journal of Cellular Biochemistry, vol. 100, no. 5, pp. 1324–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Shen, A. Wei, S. Whittaker et al., “The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro,” Journal of Cellular Biochemistry, vol. 109, no. 2, pp. 406–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Katagiri, A. Yamaguchi, M. Komaki et al., “Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage,” Journal of Cell Biology, vol. 127, no. 6 I, pp. 1755–1766, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Kobayashi, T. Yasu, H. Ueba et al., “Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells,” Experimental Hematology, vol. 32, no. 12, pp. 1238–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Zhang, J. Li, L. Zhang et al., “Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells,” Archives of Oral Biology, vol. 57, no. 10, pp. 1395–1407, 2012. View at Publisher · View at Google Scholar
  10. H. Sackin, “Stretch-activated ion channels,” Kidney International, vol. 48, no. 4, pp. 1134–1147, 1995. View at Google Scholar · View at Scopus
  11. S. M. Jones and A. Kazlauskas, “Connecting signaling and cell cycle progression in growth factor-stimulated cells,” Oncogene, vol. 19, no. 49, pp. 5558–5567, 2000. View at Google Scholar · View at Scopus
  12. S. Gallea, F. Lallemand, A. Atfi et al., “Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells,” Bone, vol. 28, no. 5, pp. 491–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Sen, Z. Xie, N. Case, M. Ma, C. Rubin, and J. Rubin, “Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal,” Endocrinology, vol. 149, no. 12, pp. 6065–6075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Zhang, Y. Wu, Z. Jiang, L. Jiang, and B. Fang, “Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling,” International Journal of Molecular Medicine, vol. 29, pp. 1083–1089, 2012. View at Google Scholar
  15. J. Kopf, A. Petersen, G. N. Duda, and P. Knaus, “BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway,” BMC Biology, vol. 10, article 37, 2012. View at Publisher · View at Google Scholar
  16. G. Khayat, D. H. Rosenzweig, and T. M. Quinn, “Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells,” Differentiation, vol. 83, pp. 179–184, 2012. View at Google Scholar
  17. E. Lau, S. Al-Dujaili, A. Guenther, D. Liu, L. Wang, and L. You, “Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts,” Bone, vol. 46, no. 6, pp. 1508–1515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. A. Reijnders, N. Bravenboer, P. J. Holzmann, F. Bhoelan, M. A. Blankenstein, and P. Lips, “In vivo mechanical loading modulates insulin-like growth factor binding protein-2 gene expression in rat osteocytes,” Calcified Tissue International, vol. 80, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Li, Z. Khavandgar, S. H. Lin, and M. Murshed, “Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3-independent mechanism,” Bone, vol. 48, no. 2, pp. 321–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Majd, P. J. Wipff, L. Buscemi et al., “A novel method of dynamic culture surface expansion improves mesenchymal stem cell proliferation and phenotype,” Stem Cells, vol. 27, no. 1, pp. 200–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. P. Makarenkova, K. N. Gonzalez, W. B. Kiosses, and R. Meech, “Barx2 controls myoblast fusion and promotes MyoD-mediated activation of the smooth muscle α-actin gene,” The Journal of Biological Chemistry, vol. 284, no. 22, pp. 14866–14874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Komori, H. Yagi, S. Nomura et al., “Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts,” Cell, vol. 89, no. 5, pp. 755–764, 1997. View at Google Scholar · View at Scopus
  23. C. Niger, F. Lima, D. J. Yoo et al., “The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter,” Bone, vol. 49, pp. 683–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Ulsamer, M. J. Ortuño, S. Ruiz et al., “BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38,” The Journal of Biological Chemistry, vol. 283, no. 7, pp. 3816–3826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. O. A. Arosarena, F. E. del Carpio-Cano, R. A. dela Cadena, M. C. Rico, E. Nwodim, and F. F. Safadi, “Comparison of bone morphogenetic protein-2 and osteoactivin for mesenchymal cell differentiation: effects of bolus and continuous administration,” Journal of Cellular Physiology, vol. 226, pp. 2943–2952, 2011. View at Google Scholar
  26. I. S. Kim, Y. M. Song, T. H. Cho, J. Y. Kim, F. E. Weber, and S. J. Hwang, “Synergistic action of static stretching and BMP-2 stimulation in the osteoblast differentiation of C2C12 myoblasts,” Journal of Biomechanics, vol. 42, no. 16, pp. 2721–2727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Iwata, S. Suzuki, K. Hayakawa, T. Inoue, and K. Naruse, “Uniaxial cyclic stretch increases glucose uptake into C2C12 myotubes through a signaling pathway independent of insulin-like growth factor I,” Hormone and Metabolic Research, vol. 41, no. 1, pp. 16–22, 2009. View at Google Scholar · View at Scopus
  28. S. H. Hook, H. J. Lee, W. T. Chung et al., “Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK,” Molecules and Cells, vol. 25, no. 4, pp. 479–486, 2008. View at Google Scholar · View at Scopus
  29. Y. Shi, H. Li, X. Zhang et al., “Continuous cyclic mechanical tension inhibited Runx2 expression in mesenchymal stem cells through RhoA-ERK1/2 pathway,” Journal of Cellular Physiology, vol. 226, no. 8, pp. 2159–2169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Solem, B. F. Eames, M. Tokita, and R. A. Schneider, “Mesenchymal and mechanical mechanisms of secondary cartilage induction,” Developmental Biology, vol. 356, no. 1, pp. 28–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Grossi, R. Lametsch, A. H. Karlsson, and M. A. Lawson, “Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression: a proteomic approach,” Cell Biology International, vol. 35, no. 6, pp. 579–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. F. Rui, P. P. Y. Lui, M. Ni, L. S. Chan, Y. W. Lee, and K. M. Chan, “Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells,” Journal of Orthopaedic Research, vol. 29, no. 3, pp. 390–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. C. E. Sarraf, W. R. Otto, and M. Eastwood, “In vitro mesenchymal stem cell differentiation after mechanical stimulation,” Cell Proliferation, vol. 44, no. 1, pp. 99–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Katagiri, A. Yamaguchi, T. Ikeda et al., “The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2,” Biochemical and Biophysical Research Communications, vol. 172, no. 1, pp. 295–299, 1990. View at Google Scholar · View at Scopus
  35. A. Yamaguchi, T. Katagiri, T. Ikeda et al., “Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro,” Journal of Cell Biology, vol. 113, no. 3, pp. 681–687, 1991. View at Google Scholar · View at Scopus
  36. E. A. Wang, D. I. Israel, S. Kelly, and D. P. Luxenberg, “Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells,” Growth Factors, vol. 9, no. 1, pp. 57–71, 1993. View at Google Scholar · View at Scopus
  37. E. Kaivosoja, S. Myllymaa, Y. Takakubo et al., “Osteogenesis of human mesenchymal stem cells on micro-patterned surfaces,” Journal of Biomaterials Applications, 2011. View at Publisher · View at Google Scholar
  38. M. Q. Hassan, R. S. Tare, H. L. Suk et al., “BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network,” The Journal of Biological Chemistry, vol. 281, no. 52, pp. 40515–40526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Nakai, F. Kawano, Y. Oke et al., “Mechanical stretch activates signaling events for protein translation initiation and elongation in C2C12 myoblasts,” Molecules and Cells, vol. 30, no. 6, pp. 513–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Rawadi, B. Vayssière, F. Dunn, R. Baron, and S. Roman-Roman, “BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop,” Journal of Bone and Mineral Research, vol. 18, no. 10, pp. 1842–1853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Rauch and P. T. Loughna, “Stretch-induced activation of ERK in myocytes is p38 and calcineurin-dependent,” Cell Biochemistry and Function, vol. 26, no. 8, pp. 866–869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Rubin, C. Rubin, and C. R. Jacobs, “Molecular pathways mediating mechanical signaling in bone,” Gene, vol. 367, no. 1-2, pp. 1–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. G. Ziros, A. P. R. Gil, T. Georgakopoulos et al., “The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells,” The Journal of Biological Chemistry, vol. 277, no. 26, pp. 23934–23941, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Robinson, M. Chatterjee-Kishore, P. J. Yaworsky et al., “Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone,” The Journal of Biological Chemistry, vol. 281, no. 42, pp. 31720–31728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. C. Yu, T. C. Wu, M. R. Chen, S. W. Liu, J. H. Chen, and K. M. C. Lin, “Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways,” Journal of Bone and Mineral Research, vol. 25, no. 5, pp. 1128–1137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. T. P. Hill, D. Später, M. M. Taketo, W. Birchmeier, and C. Hartmann, “Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes,” Developmental Cell, vol. 8, no. 5, pp. 727–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. F. Day, X. Guo, L. Garrett-Beal, and Y. Yang, “Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis,” Developmental Cell, vol. 8, no. 5, pp. 739–750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Nilsson, E. A. Parker, A. Hegde, M. Chau, K. M. Barnes, and J. Baron, “Gradients in bone morphogenetic protein-related gene expression across the growth plate,” Journal of Endocrinology, vol. 193, no. 1, pp. 75–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Henderson and D. R. Carter, “Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures,” Bone, vol. 31, no. 6, pp. 645–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Zeller, J. López-Ríos, and A. Zuniga, “Vertebrate limb bud development: moving towards integrative analysis of organogenesis,” Nature Reviews Genetics, vol. 10, no. 12, pp. 845–858, 2009. View at Publisher · View at Google Scholar · View at Scopus