Table of Contents
ISRN Organic Chemistry
Volume 2013 (2013), Article ID 159164, 10 pages
Research Article

Synthesis and In Vitro Evaluation of Novel Acyclic and Cyclic Nucleoside Analogs with a Thiadiazole Ring

1Division of Science and Mathematics, Eureka College, 300 E. College Avenue, Eureka, IL 61530, USA
2Division of Biomedical Marine Research, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
3Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, P.O. Box 3091, Boca Raton, FL 33431-0991, USA

Received 9 July 2012; Accepted 10 October 2012

Academic Editors: B. Das, T. Kurtan, R. Pohl, and J. Tamariz

Copyright © 2013 Yuxiang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The synthesis of six thiadiazole nucleoside analogs is reported: 5-diacetylamino-1,2,4-thiadiazol-3-one (1), 5-amino-2- (tetrahydrofuran-2-yl)-1,2,4-thiadiazol-3-one (2), 5-amino-3-[(2′-hydroxyethoxy)methyl]-1,3,4-thiadiazol-2-one (3), 5-amino-3-(4′-hydroxy-2′-hydroxymethyl-butyl)-1,3,4-thiadiazole-2-thione (4), (R)-5-amino-3-(2′,3′-dihydroxypropyl)-1,3,4-thiadiazole-2-thione (5), and (S)-5-amino-3-(2′,3′-dihydroxypropyl)-1,3,4-thiadiazole-2-thione (6). The synthesis, characterization, and properties of these new synthesized thiadiazole derivatives are discussed. A dimerization of 5-amino-3H-1,3,4-thiadiazole-2-thione (14) by sodium nitrite resulting in di-(5-amino-1,3,4-thiadiazol-2-yl) disulfide (19) is also reported. The preliminary in vitro evaluation of these newly synthesized compounds is discussed.