Table of Contents
ISRN Parasitology
Volume 2013 (2013), Article ID 180652, 8 pages
http://dx.doi.org/10.5402/2013/180652
Research Article

Analysis of Spleen Cells in Susceptible and Resistant Mice with Experimental Lagochilascariosis

1Laboratory of Immunochemistry, Butantan Institute, São Paulo, SP, Brazil
2Laboratory of Immunogenetics, Butantan Institute, São Paulo, SP, Brazil
3Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil

Received 12 June 2012; Accepted 2 August 2012

Academic Editors: A. Jabbar and G. Mkoji

Copyright © 2013 Priscila Guirão Lara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Sakamoto and P. A. Cabrera, “Subcutaneous infection of Lagochilascaris minor in domestic cats from Uruguay,” Veterinary Parasitology, vol. 108, no. 2, pp. 145–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. L. Barbosa, A. P. Barbosa, and D. M. B. Campos, “Domestic cat (Felis catus domesticus) as possible reservoir of Lagochilascaris minor Leiper, 1909,” Revista De Patologia Tropical, vol. 34, pp. 205–211, 2005. View at Google Scholar
  3. V. C. Guimarães, A. P. Barbosa, L. A. Camargo et al., “Lagochilascaris minor otomastoiditis in child: case report,” International Archives of Otorhinolaryngology, vol. 14, pp. 373–376, 2010. View at Google Scholar
  4. J. L. Roig, J. L. Roig-Ocampos Forteza, L. Granato, and D. Poletti Serafini, “Otomastoidititis with right retroauricular fistula by Lagochilascaris minor,” Brazilian journal of otorhinolaryngology, vol. 76, no. 3, p. 407, 2010. View at Google Scholar · View at Scopus
  5. M. Q. Moura, S. Jeske, T. Gallina, S. Borsuk, M. E. A. Berne, and M. M. Villela, “First report of Lagochilascaris (Nematoda: Ascarididae) eggs in a public park in Southern Brazil,” Veterinary Parasitology, vol. 184, pp. 359–361, 2012. View at Publisher · View at Google Scholar
  6. D. M. Campos, L. G. Freire Filha, M. A. Vieira, J. M. Paçô, and M. A. Maia, “Experimental life cycle of Lagochilascaris minor Leiper, 1909,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 34, no. 4, pp. 277–287, 1992. View at Google Scholar · View at Scopus
  7. G. S. Volcan, C. E. Medrano, and G. Payares, “Experimental heteroxenous cycle of Lagochilascaris minor Leiper, 1909 (Nematoda: Ascarididae) in white mice and in cats,” Memorias do Instituto Oswaldo Cruz, vol. 87, no. 4, pp. 525–532, 1992. View at Google Scholar · View at Scopus
  8. M. F. S. Prudente, J. G. Freitas, E. L. Ribeiro, and M. S. Carvalhaes, “Influence of the genetic pattern and sex of mice in experimental lagochilascariosis,” Helminthologia, vol. 46, no. 1, pp. 31–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Semerene, R. D. S. Lino, J. A. Oliveira et al., “Experimental lagochilascariosis: histopathological study of inflammatory response to larval migration in the murine model,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 4, pp. 393–398, 2004. View at Google Scholar · View at Scopus
  10. M. S. Carvalhaes, M. Spadafora-Ferreira, L. C. Fernandes et al., “Lagochilascaris minor: susceptibility and resistance to experimental infection in mice is independent of H-2a haplotype and correlates with the immune response in immunized animals,” Journal of Parasitology Research, vol. 2010, Article ID 610457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. F. D. S. Prudente, A. D. M. C. Crespo, and M. S. Carvalhaes, “Lagochilascaris minor: antibody production in experimentally infected mice,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 42, no. 3, pp. 325–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. de Freitas, M. F. de Souza Prudente, M. Spadafora-Ferreira et al., “Lagochilascaris minor: experimental infection of C57BL/6 and BALB/c isogenic mice reveals the presence of adult worms,” Experimental Parasitology, vol. 119, no. 3, pp. 325–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. G. De Freitas, M. F. D. S. Prudente, and M. S. Carvalhaes, “Experimental lagochilascariosis in X-chromosome-linked immunodeficient mice,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 42, no. 4, pp. 381–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. A. Hoffman, J. A. Pons, and J. L. Janer, “The sedimentation concentration method in schistosomiais mansoni,” Puerto Rico Journal of Public Health, vol. 9, pp. 283–291, 1934. View at Google Scholar
  15. E. C. Faust, W. Sawitz, J. Tobie, V. Odom, C. Peres, and D. R. Lincicome, “Comparative efficiency of various technics for the diagnosis of protozoa and helminths in feces,” Journal of Parasitology, vol. 25, pp. 241–262, 1939. View at Publisher · View at Google Scholar
  16. J. A. Oliveira, C. L. Barbosa, M. A. Vieira et al., “Isolado de Lagochilascaris minor: procedimentos para obtenção de ovos infectantes,” Revista de Patologia Tropical, vol. 31, pp. 121–128, 2002. View at Google Scholar
  17. V. P. A. Teixeira, S. A. L. Pereira, D. B. R. Rodrigues et al., “Principios básicos e aplicacões da morfometria,” http://www.luzimarteixeira.com.br/wp-content/uploads/2011/01/principios-basicos-e-aplicacoes-da-morfometria.pdf.
  18. T. K. Van Den Berg and G. Kraal, “A function for the macrophage F4/80 molecule in tolerance induction,” Trends in Immunology, vol. 26, no. 10, pp. 506–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Arranz, C. Doxaki, E. Vergadi et al., “Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization,” Proceedings of the National Academy of Scinces of the United States of America, vol. 109, no. 24, pp. 9517–9522, 2012. View at Publisher · View at Google Scholar
  20. D. Kurotaki, S. Kon, K. Bae et al., “CSF-1-dependent red pulp macrophages regulate CD4 T cell responses,” Journal of Immunology, vol. 186, no. 4, pp. 2229–2237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Fouad Ahmed, I. P. Oswald, P. Caspar et al., “Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni,” Infection and Immunity, vol. 65, no. 1, pp. 219–226, 1997. View at Google Scholar · View at Scopus
  23. J. Alonso-Trujillo, I. Rivera-Montoya, M. Rodríguez-Sosa, and L. I. Terrazas, “Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis,” Parasitology Research, vol. 100, no. 6, pp. 1341–1350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. E. Mebius and G. Kraal, “Structure and function of the spleen,” Nature Reviews Immunology, vol. 5, no. 8, pp. 606–616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Noël, G. Raes, G. H. Ghassabeh, P. De Baetselier, and A. Beschin, “Alternatively activated macrophages during parasite infections,” Trends in Parasitology, vol. 20, no. 3, pp. 126–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. I. Rutitzky, J. R. Lopes Da Rosa, and M. J. Stadecker, “Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17,” Journal of Immunology, vol. 175, no. 6, pp. 3920–3926, 2005. View at Google Scholar · View at Scopus
  27. X. Wen, L. He, Y. Chi et al., “Dynamics of Th17 cells and their role in Schistosoma japonicum infection in C57BL/6 mice,” PLoS Neglected Tropical Diseases, vol. 5, Article ID e1399, 2012. View at Google Scholar
  28. T. Duhen, R. Duhen, A. Lanzavecchia, F. Salluto, and D. J. Campbell, “Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells,” Blood, vol. 119, pp. 4430–4440, 2012. View at Publisher · View at Google Scholar
  29. N. E. Humphreys, J. J. Worthington, M. C. Little, E. J. Rice, and R. K. Grencis, “The role of CD8+ cells in the establishment and maintenance of a Trichuris muris infection,” Parasite Immunology, vol. 26, no. 4, pp. 187–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Cheroutre and F. Lambolez, “Doubting the TCR coreceptor function of CD8αα,” Immunity, vol. 28, no. 2, pp. 149–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Cardona, B. I. Restrepo, J. M. Jaramillo, and J. M. Teale, “Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of γδ T cells,” Journal of Immunology, vol. 162, no. 2, pp. 995–1002, 1999. View at Google Scholar · View at Scopus
  32. T. F. Tedder, M. Inaoki, and S. Sato, “The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity,” Immunity, vol. 6, no. 2, pp. 107–118, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. I. L. King and M. Mohrs, “IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells,” Journal of Experimental Medicine, vol. 206, no. 5, pp. 1001–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. H. Smits, B. Everts, F. C. Hartgers, and M. Yazdanbakhsh, “Chronic helminth infections protect against allergic diseases by active regulatory processes,” Current Allergy and Asthma Reports, vol. 10, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus