Table of Contents
ISRN Anesthesiology
Volume 2013 (2013), Article ID 202835, 7 pages
http://dx.doi.org/10.1155/2013/202835
Review Article

Midazolam in Subarachnoid Block: Current Evidence

1Lilabati Hospital & Research Center, Mumbai 50, India
2Department of Anaesthesiology and Intensive Care, AIIMS, Ansari Nagar, New Delhi 29, India

Received 31 December 2012; Accepted 27 January 2013

Academic Editors: E. Freye and A. Mizutani

Copyright © 2013 Anirban Chattopadhyay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Walser, L. E. Benjamin Sr., T. Flynn, C. Mason, R. Schwartz, and R. I. Fryer, “Quinazolines and 1,4-benzodiazepines. 84. Synthesis and reactions of imidazo[1,5-a][1,4]benzodiazepines,” Journal of Organic Chemistry, vol. 43, no. 5, pp. 936–944, 1978. View at Google Scholar · View at Scopus
  2. J. G. Reves, R. J. Fragen, H. R. Vinik, and D. J. Greenblatt, “Midazolam: pharmacology and uses,” Anesthesiology, vol. 62, no. 3, pp. 310–324, 1985. View at Google Scholar · View at Scopus
  3. D. J. Greenblatt, R. I. Shader, and D. R. Abernethy, “Drug therapy. Current status of benzodiazepines,” The New England Journal of Medicine, vol. 309, no. 6, pp. 354–358, 1983. View at Google Scholar · View at Scopus
  4. R. M. Arendt, D. J. Greenblatt, R. H. deJong et al., “In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution,” Journal of Pharmacology and Experimental Therapeutics, vol. 227, no. 1, pp. 98–106, 1983. View at Google Scholar · View at Scopus
  5. W. B. Mendelson, “Neuropharmacology of sleep induction by benzodiazepines,” Critical Reviews in Neurobiology, vol. 6, no. 4, pp. 221–232, 1992. View at Google Scholar · View at Scopus
  6. P. G. Strange, “D1/D2 dopamine receptor interaction at the biochemical level,” Trends in Pharmacological Sciences, vol. 12, no. 2, pp. 48–49, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Möhler, J. M. Fritschy, and U. Rudolph, “A new benzodiazepine pharmacology,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 1, pp. 2–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Goodchild, Z. Guo, A. Musgreave, and J. P. Gent, “Antinociception by intrathecal midazolam involves endogenous neurotransmitters acting at spinal cord delta opioid receptors,” The British Journal of Anaesthesia, vol. 77, no. 6, pp. 758–763, 1996. View at Google Scholar · View at Scopus
  9. R. K. Stoelting, Pharmacology and Physiology in Anaesthesia Practice, Lippincott-Raven, Philadelphia, Pa, USA, 4th edition, 1999.
  10. D. M. Little Jr., Classical Anaesthesia Files, Wood Library—Museum of Anesthesiology, 1985.
  11. A. S. Lyons and R. J. Petrucelli, Medicine: An Illustrated History, Abradale Press/Abrams, 1978.
  12. J. B. Dahl, I. S. Jeppesen, H. Jørgensen, J. Wetterslev, and S. Møiniche, “Intraoperative and postoperative analgesic efficacy and adverse effects of intrathecal opioids in patients undergoing cesarean section with spinal anesthesia: a qualitative and quantitative systematic review of randomized controlled trials,” Anesthesiology, vol. 91, no. 6, pp. 1919–1927, 1999. View at Google Scholar · View at Scopus
  13. D. Niv, J. G. Whitwam, and L. Loh, “Depression of nociceptive sympathetic reflexes by the intrathecal administration of midazolam,” The British Journal of Anaesthesia, vol. 55, no. 6, pp. 541–547, 1983. View at Google Scholar · View at Scopus
  14. R. L. M. Faull and J. W. Villiger, “Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study,” Neuroscience, vol. 17, no. 3, pp. 791–802, 1986. View at Google Scholar · View at Scopus
  15. H. Muller, H. Gerlach, J. Boldt et al., “Spasticity treatment with spinal morphine or midazolam: in vitro experiments, animal studies and clinical studies on compatibility and effectiveness,” Anaesthesist, vol. 35, no. 5, pp. 306–316, 1986. View at Google Scholar
  16. C. S. Goodchild and J. Noble, “The effects of intrathecal midazolam on sympathetic nervous system reflexes in man—a pilot study,” The British Journal of Clinical Pharmacology, vol. 23, no. 3, pp. 279–285, 1987. View at Google Scholar · View at Scopus
  17. J. M. Serrao, J. P. Gent, and C. S. Goodchild, “Naloxone antagonizes the spinal analgesic effects of midazolam,” The British Journal of Anaesthesia, vol. 62, no. 2, pp. 233–234, 1989. View at Google Scholar · View at Scopus
  18. H. J. Waldvogel, R. L. M. Faull, K. L. R. Jansen et al., “GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels,” Neuroscience, vol. 39, no. 2, pp. 361–385, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Edwards, J. M. Serrao, J. P. Gent, and C. S. Goodchild, “On the mechanism by which midazolam causes spinally mediated analgesia,” Anesthesiology, vol. 73, no. 2, pp. 273–277, 1990. View at Google Scholar · View at Scopus
  20. J. J. Bonica, The Management of Pain, Lea and Febiger, Philadelphia, Pa, USA, 2nd edition, 1990.
  21. J. M. Malinovsky, A. Cozian, J. Y. Lepage, J. M. Mussini, M. Pinaud, and R. Souron, “Ketamine and midazolam neurotoxicity in the rabbit,” Anesthesiology, vol. 75, no. 1, pp. 91–97, 1991. View at Google Scholar · View at Scopus
  22. S. Erdine, A. Yucel, S. Ozyalcin et al., “Neurotoxicity of midazolam in the rabbit,” Pain, vol. 80, no. 1, pp. 419–423, 1999. View at Publisher · View at Google Scholar
  23. P. Schoeffler, P. Auroy, J. E. Bazin, J. Taxi, and A. Woda, “Subarachnoid midazolam: histologic study in rats and report of its effect on chronic pain in humans,” Regional Anesthesia, vol. 16, no. 6, pp. 329–332, 1991. View at Google Scholar · View at Scopus
  24. J. L. Aguilar, P. Espachs, G. Roca, D. Samper, C. Cubells, and F. Vidal, “Difficult management of pain following sacrococcygeal chordoma: 13 months of subarachnoid infusion,” Pain, vol. 59, no. 2, pp. 317–320, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. B. A. Svensson, M. Welin, T. Gordh, and J. Westman, “Chronic subarachnoid midazolam (dormicum) in the rat: morphologic evidence of spinal cord neurotoxicity,” Regional Anesthesia, vol. 20, no. 5, pp. 426–434, 1995. View at Google Scholar · View at Scopus
  26. J. M. Valentine, G. Lyons, and M. C. Bellamy, “The effect of intrathecal midazolam on post-operative pain,” European Journal of Anaesthesiology, vol. 13, no. 6, pp. 589–593, 1996. View at Publisher · View at Google Scholar
  27. P. A. J. Borg and H. J. Krijnen, “Long-term intrathecal administration of midazolam and clonidine,” Clinical Journal of Pain, vol. 12, no. 1, pp. 63–68, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Bozkurt, Y. Tunali, G. Kaya, and I. Okar, “Histological changes following epidural injection of midazolam in the neonatal rabbit,” Paediatric Anaesthesia, vol. 7, no. 5, pp. 385–389, 1997. View at Google Scholar · View at Scopus
  29. M. Bahar, M. L. Cohen, Y. Grinshpon, and M. Chanimov, “Spinal anaesthesia with midazolam in the rat,” Canadian Journal of Anaesthesia, vol. 44, no. 2, pp. 208–215, 1997. View at Google Scholar · View at Scopus
  30. T. Nishiyama, T. Matsukawa, and K. Hanoaka, “Acute phase histopathological study of spinally administered midazolamin cats,” Anesthesia and Analgesia, vol. 89, no. 3, pp. 717–720, 1999. View at Google Scholar
  31. T. Nishiyama, T. Matsukawa, and K. Hanaoka, “Continuous epidural administration of midazolam and bupivacaine for postoperative analgesia,” Acta Anaesthesiologica Scandinavica, vol. 43, no. 5, pp. 568–572, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Nishiyama, N. Sugai, and K. Hanaoka, “In vitro changes in the transparency and pH of cerebrospinal fluid caused by adding midazolam,” European Journal of Anaesthesiology, vol. 15, no. 1, pp. 27–31, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Güleç, B. Büyükkidan, N. Oral, N. Ozcan, and B. Tanriverdi, “Comparison of caudal bupivacaine, bupivacaine-morphine and bupivacaine-midazolam mixtures for post-operative analgesia in children,” European Journal of Anaesthesiology, vol. 15, no. 2, pp. 161–165, 1998. View at Google Scholar
  34. Y. K. Batra, K. Jain, P. Chari, M. S. Dhillon, B. Shaheen, and G. M. Reddy, “Addition of intrathecal midazolam to bupivacaine produces better post-operative analgesia without prolonging recovery,” International Journal of Clinical Pharmacology and Therapeutics, vol. 37, no. 10, pp. 519–523, 1999. View at Google Scholar · View at Scopus
  35. M. H. Kim and Y. M. Lee, “Intrathecal midazolam increases the analgesic effects of spinal blockade with bupivacaine in patients undergoing haemorrhoidectomy,” The British Journal of Anaesthesia, vol. 86, no. 1, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Sen, A. Rudra, S. K. Sarkar, and B. Biswas, “Intrathecal midazolam for postoperative pain relief in caesarean section delivery,” Journal of the Indian Medical Association, vol. 99, no. 12, pp. 683–686, 2001. View at Google Scholar · View at Scopus
  37. R. Mahajan, Y. K. Batra, V. K. Grover, and J. Kajal, “A comparative study of caudal bupivacaine and midazolam-bupivacaine mixture for post-operative analgesia in children undergoing genitourinary surgery,” International Journal of Clinical Pharmacology and Therapeutics, vol. 39, no. 3, pp. 116–120, 2001. View at Google Scholar · View at Scopus
  38. F. R. Shah, A. R. Halbe, I. D. Panchal, and C. S. Goodchild, “Improvement in postoperative pain relief by the addition of midazolam to an intrathecal injection of buprenorphine and bupivacaine,” European Journal of Anaesthesiology, vol. 20, no. 11, pp. 904–910, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Bharti, R. Madan, P. R. Mohanty, and H. L. kaul, “Intrathecal midazolam added to bupivacaine improves the duration and quality of spinal anaesthesia,” Acta Anaesthesiologica Scandinavica, vol. 47, no. 9, pp. 1101–1105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. P. Tucker, C. Lai, R. Nadeson, and C. S. Goodchild, “Intrathecal midazolam I: a cohort study investigation safety,” Anesthesia and Analgesia, vol. 98, no. 6, pp. 1512–1520, 2004. View at Google Scholar · View at Scopus
  41. A. P. Tucker, J. Mezzatesta, R. Nadeson, and C. S. Goodchild, “Intrathecal midazolam II: combination with intrathecal fentanyl for labor pain,” Anesthesia and Analgesia, vol. 98, no. 6, pp. 1521–1527, 2004. View at Google Scholar · View at Scopus
  42. A. Yegin, S. Sanli, L. Dosemeci, N. Kayacan, M. Akbas, and B. Karsli, “The analgesic and sedative effects of intrathecal midazolam in perianal surgery,” European Journal of Anaesthesiology, vol. 21, no. 8, pp. 658–662, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Agrawal, A. Usmani, R. Sehgal, R. Kumar, and P. Bhadoria, “Effect of intrathecal midazolam bupivacaine on post-operative analgesia,” Indian Journal of Anaesthesia, vol. 49, no. 1, pp. 37–39, 2005. View at Google Scholar
  44. J. Prochazka, “775 intrathecal midazolam as an analgesic—10 years experience,” European Journal of Pain, vol. 10, no. S1, article S202, 2006. View at Publisher · View at Google Scholar
  45. S. Prakash, N. Joshi, A. R. Gogia, S. Prakash, and R. Singh, “Analgesic efficacy of two doses of intrathecal midazolam with bupivacaine in patients undergoing cesarean delivery,” Regional Anesthesia and Pain Medicine, vol. 31, no. 3, pp. 221–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Gupta, S. Prakash, S. Deshpande, and K. S. Kale, “The effect of intrathecal midazolam 2.5 mg with bupivacaine on postoperative pain relief in patients undergoing orthopaedic surgery,” The Internet Journal of Anesthesiology, vol. 14, no. 2, 2007. View at Google Scholar
  47. M. J. Yun, Y. H. Kim, J. H. Kim, K. O. Kim, A. Y. Oh, and H. P. Park, “Intrathecal midazolam added to bupivacaine prolongs the duration of spinal blockade to T10 dermatome in orthopedic patients,” Korean Journal of Anesthesiology, vol. 53, no. 3, pp. S22–S28, 2007. View at Publisher · View at Google Scholar
  48. K. M. Ho and H. Ismail, “Use of intrathecal midazolam to improve perioperative analgesia: a meta-analysis,” Anaesthesia and Intensive Care, vol. 36, no. 3, pp. 365–373, 2008. View at Google Scholar · View at Scopus
  49. S. Jaiswal, P. Ranjan, N. Tewari, N. R. Agarwal, and S. K. Mathur, “Comparative study of epidural midazolam and butorphanol as adjuvant with bupivacaine for labor analgesia: a double blind study,” The Internet Journal of Anesthesiology, vol. 14, no. 1, 2007. View at Publisher · View at Google Scholar
  50. G. P. Dureja, H. Usmani, M. Khan, M. Tahseen, and A. Jamal, “Efficacy of intrathecal midazolam with or without epidural methylprednisolone for management of post-herpetic neuralgia involving lumbosacral dermatomes,” Pain Physician, vol. 13, no. 3, pp. 213–221, 2010. View at Google Scholar · View at Scopus
  51. B. K. Shadangi, R. Garg, R. Pandey, and T. Das, “Effects of intrathecal midazolam in spinal anaesthesia: a prospective randomised case control study,” Singapore Medical Journal, vol. 52, no. 6, pp. 432–435, 2011. View at Google Scholar · View at Scopus
  52. H. Talebi, B. Yazdi, S. Alizadeh, E. Moshiry, A. Nourozi, and P. Eghtesadi-Araghi, “Effects of combination of intrathecal lidocaine and two doses of intrathecal midazolam on post-operative pain in patients undergoing herniorrhaphy: a randomized controlled trial,” Pakistan Journal of Biological Sciences, vol. 13, no. 23, pp. 1156–1160, 2010. View at Google Scholar · View at Scopus
  53. S. A. Joshi, V. V. Khadke, R. D. Subhedar, A. W. Patil, and V. M. Motghare, “Comparative evaluation of intrathecal midazolam and low dose clonidine: efficacy, safety and duration of analgesia. A randomized, double blind, prospective clinical trial,” Indian Journal of Pharmacology, vol. 44, no. 3, pp. 357–361, 2012. View at Publisher · View at Google Scholar