Table of Contents
ISRN Pharmacology
Volume 2013, Article ID 256934, 7 pages
Research Article

Antitussive Efficacy and Safety Profile of Ethyl Acetate Fraction of Terminalia chebula

1Department of Pharmacy, Hazara University, Havelian Campus, Havelian, Abbottabad 22500, Pakistan
2Section of Pharmacology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
3Comsats Institute of Information Technology, Abbottabad 22000, Pakistan
4Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
5Section of Neurosciences and Ethics, Baqiyatallah University of Medical Sciences, Tehran 19945-587, Iran

Received 25 May 2013; Accepted 2 July 2013

Academic Editors: K.-A. Chuang and R. Couture

Copyright © 2013 Rizwan ul Haq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Antitussive effects of ethyl acetate fraction of Terminalia chebula on sulphur dioxide (SO2) gas induced cough have been examined in mice. Safety profile of Terminalia chebula was established by determining LD50 and acute neurotoxicity. The result showed that extract of Terminalia chebula dose dependently suppressed SO2 gas induced cough in mice. Terminalia chebula, after i.p. administration at dose level 500 mg/kg, offered maximum cough suppressive effects; that is, number of coughs at 60 min was (mean ± SEM) as compared to codeine 10 mg/kg; i.p., dextromethorphan 10 mg/kg; i.p., and saline, having frequency of cough , , and , respectively. LD50 value of Terminalia chebula was approximately 1265 mg/kg, respectively. No sign of neural impairment was observed at antitussive doses of extract. Antitussive effect of Terminalia chebula was partly reversed with treatment by naloxone (3 mg/kg; s.c.) while rimcazole (3 mg/kg; s.c.) did not antagonize its cough suppression activity. This may suggest that opioid receptors partially contribute in antitussive action of Terminalia chebula. Along with this, the possibility of presence of single or multiple mechanisms activated by several different pharmacological actions (mainly anti-inflammatory, antioxidant, spasmolytic, antibacterial, and antiphlegmatic) could not be eliminated.