Table of Contents
ISRN Thermodynamics
Volume 2013, Article ID 264095, 6 pages
Research Article

Thermodynamical Analysis of the Flow and Heat Transfer over a Static and a Moving Wedge

Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan

Received 12 August 2013; Accepted 24 September 2013

Academic Editors: G. L. Aranovich, A. Chagovetz, and M. Sanati

Copyright © 2013 Adnan Saeed Butt and Asif Ali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The first and second law characteristics of fluid flow and heat transfer over a static and a moving wedge are investigated. With the help of suitable similarity transformations, the governing boundary layer equations for the velocity and temperature fields are transformed into ordinary differential equations and are solved numerically. The velocity and the temperature profiles are obtained for various parameters and are utilized to compute the entropy generation number Ns and the Bejan number Be. The effects of various physical parameters on the entropy generation number and the Bejan number are depicted through graphs and are discussed qualitatively. It is observed that the entropy production rate is less in case of wedge moving in the opposite direction to flow as compared to static wedge.