Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 276070, 5 pages
http://dx.doi.org/10.1155/2013/276070
Research Article

The Performance of ICDAS-II Using Low-Powered Magnification with Light-Emitting Diode Headlight and Alternating Current Impedance Spectroscopy Device for Detection of Occlusal Caries on Primary Molars

Western University Schulich School of Medicine and Dentistry, Dental Sciences Building, Room 1017, London, ON, Canada N6A 5C1

Received 20 May 2013; Accepted 2 July 2013

Academic Editors: H. S. Cardash, G. H. Sperber, and D. Wray

Copyright © 2013 Timucin Ari and Nilgun Ari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hannigan, D. M. O'Mullane, D. Barry, F. Schäfer, and A. J. Roberts, “A caries susceptibility classification of tooth surfaces by survival time,” Caries Research, vol. 34, no. 2, pp. 103–108, 2000. View at Google Scholar · View at Scopus
  2. T. M. Marthaler, “Changes in dental caries 1953–2003,” Caries Research, vol. 38, no. 3, pp. 173–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Young, “New caries detection technologies and modern caries management: merging the strategies,” General Dentistry, vol. 50, no. 4, pp. 320–331, 2002. View at Google Scholar · View at Scopus
  4. R. F. Sawle and R. J. Andlaw, “Has occlusal caries become more difficult to diagnose? A study comparing clinically undetected lesions in molar teeth of 14–16-year old children in 1974 and 1982,” British Dental Journal, vol. 164, no. 7, pp. 209–211, 1988. View at Google Scholar · View at Scopus
  5. A. Lussi and P. Francescut, “Performance of conventional and new methods for the detection of occlusal caries in deciduous teeth,” Caries Research, vol. 37, no. 1, pp. 2–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” Journal of Public Health Dentistry, vol. 62, no. 4, pp. 201–213, 2002. View at Google Scholar · View at Scopus
  7. Z. Zafersoy-Akarslan, H. Erten, Ö. Uzun, and M. Semiz, “Reproducibility and agreement of clinical diagnosis of occlusal caries using unaided visual examination and operating microscope,” Journal of the Canadian Dental Association, vol. 75, no. 6, pp. 455–455, 2009. View at Google Scholar · View at Scopus
  8. A. Lussi, S. Imwinkelried, N. B. Pitts, C. Longbottom, and E. Reich, “Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro,” Caries Research, vol. 33, no. 4, pp. 261–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Pitts, “‘ICDAS’—an international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management,” Community Dental Health, vol. 21, no. 3, pp. 193–198, 2004. View at Google Scholar · View at Scopus
  10. D. C. van Gogswaardt, “Dental treatment methods using the loupe,” ZWR, vol. 99, no. 8, pp. 614–617, 1990. View at Google Scholar · View at Scopus
  11. M. J. Friedman, “Magnification in a restorative dental practice: from loupes to microscopes,” Compendium of Continuing Education in Dentistry, vol. 25, no. 1, pp. 48, 50, 53–55, 2004. View at Google Scholar · View at Scopus
  12. M. C. Downer, “Concurrent validity of an epidemiological diagnostic system for caries with the histological appearance of extracted teeth as validating criterion,” Caries Research, vol. 9, no. 3, pp. 231–246, 1975. View at Google Scholar · View at Scopus
  13. I. L. Fleiss, Statistical Methods for Rates and Proportions, pp 212–225, Wiley, New York, NY, USA, 2nd edition, 1981.
  14. H. M. Htoon, L. L. Peng, and C. Y. Huak, “Assessment criteria for compliance with oral hygiene: application of ROC analysis,” Oral Health & Preventive Dentistry, vol. 5, no. 2, pp. 83–88, 2007. View at Google Scholar · View at Scopus
  15. N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology, vol. 229, no. 1, pp. 3–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Jablonski-Momeni, V. Stachniss, D. N. Ricketts, M. Heinzel-Gutenbrunner, and K. Pieper, “Reproducibility and accuracy of the ICDAS-II for detection of occlusal caries in vitro,” Caries Research, vol. 42, no. 2, pp. 79–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Rodrigues, I. Hug, M. B. Diniz, and A. Lussi, “Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro,” Caries Research, vol. 42, no. 4, pp. 297–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Shellis, “Relationship between human enamel structure and the formation of caries-like lesions in vitro,” Archives of Oral Biology, vol. 29, no. 12, pp. 975–981, 1984. View at Google Scholar · View at Scopus
  19. E. C. Sheehy, S. R. Brailsford, E. A. M. Kidd, D. Beighton, and L. Zoitopoulos, “Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries,” Caries Research, vol. 35, no. 6, pp. 421–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. Diniz, J. D. A. Rodrigues, A. B. D. Paula, and R. D. C. L. Cordeiro, “In vivo evaluation of laser fluorescence performance using different cut-off limits for occlusal caries detection,” Lasers in Medical Science, vol. 24, no. 3, pp. 295–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Rodrigues, M. B. Diniz, M. B. Josgrilberg, and R. C. L. Cordeiro, “In vitro comparison of laser fluorescence performance with visual examination for detection of occlusal caries in permanent and primary molars,” Lasers in Medical Science, vol. 24, no. 4, pp. 501–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Jablonski-Momeni, D. N. J. Ricketts, M. Heinzel-Gutenbrunner, R. Stoll, V. Stachniss, and K. Pieper, “Impact of scoring single or multiple occlusal lesions on estimates of diagnostic accuracy of the visual ICDAS-II system,” International Journal of Dentistry, vol. 2009, Article ID 798283, 7 pages, 2009. View at Publisher · View at Google Scholar
  23. J. Kühnisch, S. Berger, I. Goddon, H. Senkel, N. Pitts, and R. Heinrich-Weltzien, “Occlusal caries detection in permanent molars according to WHO basic methods, ICDAS II and laser fluorescence measurements,” Community Dentistry and Oral Epidemiology, vol. 36, no. 6, pp. 475–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. I. Ismail, W. Sohn, M. Tellez et al., “The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries: methods,” Community Dentistry and Oral Epidemiology, vol. 35, no. 3, pp. 170–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. R. Ekstrand, S. Martignon, D. J. N. Ricketts, and V. Qvist, “Detection and activity assessment of primary coronal caries lesions: a methodologic study,” Operative Dentistry, vol. 32, no. 3, pp. 225–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Forgie, C. M. Pine, and N. B. Pitts, “The use of magnification in a preventive approach to caries detection,” Quintessence International, vol. 33, no. 1, pp. 13–16, 2002. View at Google Scholar · View at Scopus
  27. P. Mitropoulos, C. Rahiotis, A. Kakaboura, and G. Vougiouklakis, “The impact of magnification on occlusal caries diagnosis with implementation of the ICDAS II criteria,” Caries Research, vol. 46, no. 1, pp. 82–86, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. F. Hall, U. Kaczmarek, N. B. Pitts et al., “Intra-and inter-examiner repeatability of ac-Impedance Spectroscopy to detect sound and caries sites in vivo,” Caries Research, vol. 41, no. 4, p. 296, 2007. View at Google Scholar
  29. M. M. Braga, F. M. Mendes, S. Martignon, D. N. J. Ricketts, and K. R. Ekstrand, “In vitro comparison of nyvad's system and icdas-ii with lesion activity assessment for evaluation of severity and activity of occlusal caries lesions in primary teeth,” Caries Research, vol. 43, no. 5, pp. 405–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. B. Pitts, C. Longbottoma, A. F. Hall et al., “Diagnostic accuracy of an optimised ac impedance device to aid caries detection and monitoring,” Caries Research, vol. 42, no. 3, p. 211, 2008. View at Google Scholar