Table of Contents
ISRN Obesity
Volume 2013, Article ID 284516, 7 pages
http://dx.doi.org/10.1155/2013/284516
Clinical Study

Vitamin D Deficiency Is Prevalent in Morbidly Obese Adolescents Prior to Bariatric Surgery

1Department of Pediatrics, Columbia University Medical Center, 622 West 168th Street, PH 5E-522, New York, NY 10032, USA
2Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA

Received 10 January 2013; Accepted 29 January 2013

Academic Editors: A. Erkner, S. A. Lear, E. K. Naderali, J. M. Robbins, and S. Straube

Copyright © 2013 Marisa Censani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Xanthakos, “Bariatric surgery for extreme adolescent obesity: indications, outcomes, and physiologic effects on the gut-brain axis,” Pathophysiology, vol. 15, no. 2, pp. 135–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” The Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. E. O'Brien, J. B. Dixon, C. Laurie et al., “Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial,” Annals of Internal Medicine, vol. 144, no. 9, pp. 625–633, 2006. View at Google Scholar · View at Scopus
  4. J. B. Dixon, P. E. O'Brien, J. Playfair et al., “Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial,” The Journal of the American Medical Association, vol. 299, no. 3, pp. 316–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. L. Keating, J. B. Dixon, M. L. Moodie et al., “Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis,” Diabetes Care, vol. 32, no. 4, pp. 567–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Ingelfinger, “Bariatric surgery in adolescents,” The New England Journal of Medicine, vol. 365, no. 15, pp. 1365–1367. View at Publisher · View at Google Scholar
  7. P. E. O'Brien, S. M. Sawyer, C. Laurie et al., “Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial,” The Journal of the American Medical Association, vol. 303, no. 6, pp. 519–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Dolan, L. Creighton, G. Hopkins, and G. Fielding, “Laparoscopic gastric banding in morbidly obese adolescents,” Obesity Surgery, vol. 13, no. 1, pp. 101–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. B. E. Dillard III, V. Gorodner, C. Galvani et al., “Initial experience with the adjustable gastric band in morbidly obese US adolescents and recommendations for further investigation,” Journal of Pediatric Gastroenterology and Nutrition, vol. 45, no. 2, pp. 240–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. P. Nadler, H. A. Youn, C. J. Ren, and G. A. Fielding, “An update on 73 US obese pediatric patients treated with laparoscopic adjustable gastric banding: comorbidity resolution and compliance data,” Journal of Pediatric Surgery, vol. 43, no. 1, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. R. Treadwell, F. Sun, and K. Schoelles, “Systematic review and meta-analysis of bariatric surgery for pediatric obesity,” Annals of Surgery, vol. 248, no. 5, pp. 763–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Kendrick and G. F. Dakin, “Surgical approaches to obesity,” Mayo Clinic Proceedings, vol. 81, no. 10, pp. S18–S24, 2006. View at Google Scholar · View at Scopus
  13. E. M. Stein, G. Strain, N. Sinha et al., “Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study,” Clinical Endocrinology, vol. 71, no. 2, pp. 176–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Gemmel, H. P. Santry, V. N. Prachand, and J. C. Alverdy, “Vitamin D deficiency in preoperative bariatric surgery patients,” Surgery for Obesity and Related Diseases, vol. 5, no. 1, pp. 54–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Flancbaum, S. Belsley, V. Drake, T. Colarusso, and E. Tayler, “Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity,” Journal of Gastrointestinal Surgery, vol. 10, no. 7, pp. 1033–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Carlin, D. S. Rao, A. M. Meslemani et al., “Prevalence of vitamin D depletion among morbidly obese patients seeking gastric bypass surgery,” Surgery for Obesity and Related Diseases, vol. 2, no. 2, pp. 98–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. P. Nadler, S. Reddy, A. Isenalumhe et al., “Laparoscopic adjustable gastric banding for morbidly obese adolescents affects android fat loss, resolution of comorbidities, and improved metabolic status,” Journal of the American College of Surgeons, vol. 209, no. 5, pp. 638–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Misra, D. Pacaud, A. Petryk, P. F. Collett-Solberg, and M. Kappy, “Vitamin D deficiency in children and its management: review of current knowledge and recommendations,” Pediatrics, vol. 122, no. 2, pp. 398–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Vieth, “Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety,” The American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 842–856, 1999. View at Google Scholar · View at Scopus
  20. M. F. Holick, “Medical progress: vitamin D deficiency,” The New England Journal of Medicine, vol. 357, no. 3, pp. 266–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kumar, P. Muntner, F. J. Kaskel, S. M. Hailpern, and M. L. Melamed, “Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004,” Pediatrics, vol. 124, no. 3, pp. e362–e370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Smotkin-Tangorra, R. Purushothaman, A. Gupta, G. Nejati, H. Anhalt, and S. Ten, “Prevalence of vitamin D insufficiency in obese children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 20, no. 7, pp. 817–823, 2007. View at Google Scholar · View at Scopus
  23. R. Alemzadeh, J. Kichler, G. Babar, and M. Calhoun, “Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season,” Metabolism: Clinical and Experimental, vol. 57, no. 2, pp. 183–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. “NIH conference. Gastrointestinal surgery for severe obesity. Consensus development conference panel,” Annals of Internal Medicine, vol. 115, no. 12, pp. 956–961, 1991.
  25. E. Hyppönen and C. Power, “Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 860–868, 2007. View at Google Scholar · View at Scopus
  26. M. B. Snijder, R. M. van Dam, M. Visser et al., “Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4119–4123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Wortsman, L. Y. Matsuoka, T. C. Chen, Z. Lu, and M. F. Holick, “Decreased bioavailability of vitamin D in obesity,” The American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 690–693, 2000. View at Google Scholar · View at Scopus
  28. E. Kamycheva, J. Sundsfjord, and R. Jorde, “Serum parathyroid hormone level is associated with body mass index. The 5th Tromsø study,” European Journal of Endocrinology, vol. 151, no. 2, pp. 167–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Rajakumar, J. de las Heras, T. C. Chen, S. Lee, M. F. Holick, and S. A. Arslanian, “Vitamin D status, adiposity, and lipids in black American and Caucasian children,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1560–1567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Gordon, K. C. DePeter, H. A. Feldman, E. Grace, and S. J. Emans, “Prevalence of vitamin D deficiency among healthy adolescents,” Archives of Pediatrics and Adolescent Medicine, vol. 158, no. 6, pp. 531–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. H. Bell, “Bone and mineral metabolism in African Americans,” Trends in Endocrinology and Metabolism, vol. 8, no. 6, pp. 240–245, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Dong, N. Pollock, I. S. Stallmann-Jorgensen et al., “Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness,” Pediatrics, vol. 125, no. 6, pp. 1104–1111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. W. Hollis, “Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D,” The Journal of Nutrition, vol. 135, no. 2, pp. 317–322, 2005. View at Google Scholar · View at Scopus
  34. R. P. Heaney, M. S. Dowell, C. A. Hale, and A. Bendich, “Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D,” Journal of the American College of Nutrition, vol. 22, no. 2, pp. 142–146, 2003. View at Google Scholar · View at Scopus
  35. H. A. Bischoff-Ferrari, T. Dietrich, E. J. Orav, and B. Dawson-Hughes, “Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults,” The American Journal of Medicine, vol. 116, no. 9, pp. 634–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Vieth, Y. Ladak, and P. G. Walfish, “Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 1, pp. 185–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Chapuy, P. Preziosi, M. Maamer et al., “Prevalence of vitamin D insufficiency in an adult normal population,” Osteoporosis International, vol. 7, no. 5, pp. 439–443, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. G. El-Hajj Fuleihan, M. Nabulsi, M. Choucair et al., “Hypovitaminosis D in healthy schoolchildren,” Pediatrics, vol. 107, no. 4, article E53, 2001. View at Google Scholar · View at Scopus
  39. K. M. Hill, G. P. McCabe, L. D. McCabe, C. M. Gordon, S. A. Abrams, and C. M. Weaver, “An inflection point of serum 25-hydroxyvitamin D for maximal suppression of parathyroid hormone is not evident from multi-site pooled data in children and adolescents,” The Journal of Nutrition, vol. 140, no. 11, pp. 1983–1988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ashraf, J. Alvarez, K. Saenz, B. Gower, K. McCormick, and F. Franklin, “Threshold for effects of vitamin D deficiency on glucose metabolism in obese female African-American adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3200–3206, 2009. View at Publisher · View at Google Scholar · View at Scopus