Table of Contents
ISRN Spectroscopy
Volume 2013, Article ID 362694, 6 pages
http://dx.doi.org/10.1155/2013/362694
Research Article

Identification of Asbestos Using Laser-Induced Breakdown Spectroscopy: A Viable Alternative to the Conventional Approach?

L-3 TRL Technology, Unit 19 Miller Court, Severn Drive, Tewkesbury, Gloucestershire GL20 8DN, UK

Received 15 May 2013; Accepted 4 June 2013

Academic Editors: W. A. Badawy, M. Mączka, and S. Rojas

Copyright © 2013 David M. Benton. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Lemen, J. M. Dement, and J. K. Wagoner, “Epidemiology of asbestos-related diseases,” Environmental Health Perspectives, vol. 34, pp. 1–11, 1980. View at Google Scholar · View at Scopus
  2. Z. Ulanowski, Z. Wang, P. H. Kaye, and I. K. Ludlow, “Respirable asbestos detection using light scattering and magnetic alignment,” Journal of Aerosol Science, vol. 29, supplement 1, pp. 13–14, 1998. View at Google Scholar · View at Scopus
  3. E. Hirst, P. H. Kaye, and J. A. Hoskins, “Potential for recognition of airborne asbestos fibres from spatial laser scattering profiles,” Annals of Occupational Hygiene, vol. 39, no. 5, pp. 623–632, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Rinaudo, E. Belluso, and D. Gastaldi, “Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos,” Mineralogical Magazine, vol. 68, no. 3, pp. 455–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Viti, “Serpentine minerals discrimination by thermal analysis,” American Mineralogist, vol. 95, no. 4, pp. 631–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. W. Miziolek, V. Palleschi, and I. Schechter, Eds., Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.
  7. D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy, John Wiley & Sons, New York, NY, USA, 2006.
  8. J. P. Singh and S. N. Thakur, Eds., Laser Induced Breakdown Spectroscopy, Elsevier, Amsterdam, The Netherlands, 2007.
  9. C. Pasquini, J. Cortex, L. M. C. Silva, and F. B. Gonzago, “Laser induced breakdown spectroscopy,” Journal of the Brazilian Chemical Society, vol. 18, no. 3, pp. 473–712, 2007. View at Google Scholar
  10. K. Song, Y. Lee, and J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Applied Spectroscopy Reviews, vol. 32, no. 3, pp. 183–235, 1997. View at Google Scholar · View at Scopus
  11. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Applied Spectroscopy, vol. 66, no. 4, pp. 347–419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochimica Acta B, vol. 56, no. 6, pp. 821–830, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Noll, H. Bette, A. Brysch et al., “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochimica Acta B, vol. 56, no. 6, pp. 637–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Anzano, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Engineering and Science, vol. 40, no. 11, pp. 2423–2429, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Melessanaki, M. Mateo, S. C. Ferrence, P. Betancourt, and D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Applied Surface Science, vol. 197-198, pp. 156–163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Laser Induced Breakdown Spectroscopy (LIBS). The process, applications to artwork and environment,” in Advances in Spectroscopy for Lasers and Sensing, B. Di Bartolo and O. Forte, Eds., pp. 225–229, Springer, New York, NY, USA, 2006. View at Google Scholar
  17. N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosols by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Temperature Material Processes, vol. 8, no. 1, pp. 1–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochimica Acta B, vol. 56, no. 6, pp. 777–793, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochimica Acta B, vol. 60, no. 7-8, pp. 1115–1120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Godwal, M.T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis,” in Proceedings of the 3rd International Conference on the Frontiers of Plasma Physics and Technology (PC/5099) S1-5, 2007.
  21. M. T. Taschuk, I. V. Cravetchi, Y. Y. Tsui, and R. Fedosejevs, “Micro-LIBS,” in Laser-Induced Breakdown Spectroscopy, J. P. Singh and N. Thakur, Eds., chapter 8, Elsevier, New York, NY, USA, 2007. View at Google Scholar