Table of Contents
ISRN Ceramics
Volume 2013, Article ID 369670, 12 pages
http://dx.doi.org/10.1155/2013/369670
Research Article

Electrical Conduction in Ceramic by Complex Impedance/Modulus Spectroscopy

University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812007, India

Received 30 December 2012; Accepted 18 February 2013

Academic Editors: S.-Y. Chu, O. Dymshits, and S. Marinel

Copyright © 2013 Ansu Kumar Roy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition,” Soviet Physics, Solid State, vol. 2, pp. 2651–2654, 1961. View at Google Scholar
  2. A. Hussain, C. W. Ahn, H. J. Lee et al., “Anisotropic electrical properties of Bi0.5(Na0.75K0.25)0.5TiO3 ceramics fabricated by reactive templated grain growth (RTGG),” Current Applied Physics, vol. 10, pp. 305–310, 2010. View at Google Scholar
  3. D. Z. Zhang, X. J. Zheng, X. Feng et al., “Ferro-piezoelectric properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 thin film prepared by metal-organic decomposition,” Journal of Alloys and Compounds, vol. 504, no. 1, pp. 129–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ma and X. Tan, “Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics,” Solid State Communications, vol. 150, no. 33-34, pp. 1497–1500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Yang, B. Liu, L. Wei, and Y. Hou, “Structure and electrical properties of (1x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary,” Materials Research Bulletin, vol. 43, no. 1, pp. 81–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. W. C. Lee, C. Y. Huang, L. K. Tsao, and Y. C. Wu, “Crystal Structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3-(Ba,Sr)TiO3 lead-free piezoelectric ceramics,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. 307–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Lin, K. W. Kwok, and H. L. W. Chan, “Ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics,” Journal of Alloys and Compounds, vol. 481, no. 1-2, pp. 310–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Yang, Y. Hou, H. Pan, and Y. Chang, “Structure, microstructure and electrical properties of (1xy)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics,” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 246–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Zou, H. Fan, L. Chen, and W. Yang, “Microstructure and electrical properties of (1x)[0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3]-xBiFeO3 lead-free piezoelectric ceramics,” Journal of Alloys and Compounds, vol. 495, no. 1, pp. 280–283, 2010. View at Publisher · View at Google Scholar
  10. S.-T. Zhang, B. Yang, and W. Cao, “The temperature-dependent electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 near the morphotropic phase boundary,” Acta Materialia, vol. 60, no. 2, pp. 469–475, 2012. View at Publisher · View at Google Scholar
  11. H. Ni, L. Luo, W. Li, Y. Zhu, and H. Luo, “Preparation and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 lead-free piezoelectric ceramics,” Journal of Alloys and Compounds, vol. 509, no. 9, pp. 3958–3962, 2011. View at Google Scholar
  12. M. L. Liu, D. A. Yang, and Y. F. Qu, “Study on Bi2O3 doping methods and dielectric property of (1x)BaTiO3-x(Bi0.5Na0.5)TiO3 ceramics,” Journal of Alloys and Compounds, vol. 496, no. 1-2, pp. 449–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Takenaka, T. Okuda, and K. Takegahara, “Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3,” Ferroelectrics, vol. 196, no. 1–4, pp. 175–178, 1997. View at Google Scholar
  14. K. H. Ryu, T. K. Song, M. Kim et al., “Effect of BiFeO3 doping on ferroelectric and piezoelectric properties of (Bi0.5Na0.5)TiO3 and BATiO3 ceramics,” Integrated Ferroelectrics, vol. 84, no. 1, pp. 31–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Nagata and T. Takenaka, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3·Sc2O3) system,” Japanese Journal of Applied Physics, Part 1, vol. 36, no. 9, pp. 6055–6057, 1997. View at Google Scholar
  16. A. Herabut and A. Safari, “Processing and electromechanical properties of (Bi0.5Na0.5)(1-1.5x)LaxTiO3 ceramics,” Journal of the American Ceramic Society, vol. 80, no. 11, pp. 2954–2958, 1997. View at Google Scholar
  17. X. Wang, H. L. W. Chan, and C. L. Choy, “(Bi1/2Na1/2)TiO3-Ba(Cu1/2W 1/2)O3 lead-free piezoelectric ceramics,” Journal of the American Ceramic Society, vol. 86, no. 10, pp. 1809–1811, 2003. View at Google Scholar · View at Scopus
  18. M. Rawat, K. L. Yadav, A. Kumar, P. K. Patel, N. Adhlakha, and J. Rani, “Structural, dielectric and conductivity properties of Ba2+ doped (Bi0.5Na0.5)TiO3 ceramic,” Advanced Materials Letters, vol. 3, no. 4, pp. 286–292, 2012. View at Google Scholar
  19. C. Suryanarayan and M. G. Nortan, X-Ray Diffraction a Practical Approach, Plenum Press, New York, NY, USA, 1998.
  20. O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York, NY, USA, 1974.
  21. K. AmarNath and K. Prasad, “Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic,” Advances in Materials Research, vol. 1, no. 2, pp. 115–128, 2012. View at Google Scholar
  22. N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, and S. Muensit, “Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature,” Materials Letters, vol. 64, no. 3, pp. 305–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, John Wiley & Sons, New York, NY, USA, 1967.
  24. C. T. Moynihan, “Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions,” Journal of Non-Crystalline Solids, vol. 172–174, no. 2, pp. 1395–1407, 1994. View at Google Scholar · View at Scopus
  25. C. T. Moynihan, L. P. Boesch, and N. L. Laberge, “Decay function for the electric field relaxation in vitreous ionic conductors,” Physics and Chemistry of Glasses, vol. 14, no. 6, pp. 122–125, 1973. View at Google Scholar
  26. W. L. Warren, K. Vanheusden, D. Dimos, G. E. Pike, and B. A. Tuttle, “Oxygen vacancy motion in perovskite oxides,” Journal of the American Ceramic Society, vol. 79, no. 2, pp. 536–538, 1996. View at Google Scholar · View at Scopus
  27. M. J. Forbess, S. Seraji, Y. Wu, C. P. Nguyen, and G. Z. Cao, “Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1),” Applied Physics Letters, vol. 76, no. 20, pp. 2934–2936, 2000. View at Google Scholar · View at Scopus
  28. A. K. Roy, A. Singh, K. Kumari, K. AmarNath, A. Prasad, and K. Prasad, “Electrical properties and ac conductivity of (Bi0.5Na0.5)0.5Ba0.06TiO3 ceramic,” ISRN Ceramics, vol. 2012, Article ID 854831, 10 pages, 2012. View at Publisher · View at Google Scholar
  29. K. Funke, “Jump relaxation in solid electrolytes,” Progress in Solid State Chemistry, vol. 22, no. 2, pp. 111–195, 1993. View at Google Scholar
  30. D. P. Almond and C. R. Bowen, “Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristic of microstructural electrical networks,” Physical Review Letters, vol. 92, no. 15, Article ID 157601, 5 pages, 2004. View at Publisher · View at Google Scholar
  31. C. R. Bowen and D. P. Almond, “Modelling the “universal” dielectric response in heterogeneous materials using microstructural electrical networks,” Materials Science and Technology, vol. 22, pp. 719–724, 2006. View at Google Scholar
  32. G. Bator, “Ac and dc conductivity around the ferroelectric phase transition in (CH3NH3)3Bi2Br9 (MABB) crystal,” Ferroelectrics, vol. 200, no. 1–4, pp. 287–295, 1997. View at Google Scholar
  33. S. R. Elliot, “AC conduction in amorphous chalcogenide andpnictide semiconductors,” Advances in Physics, vol. 36, pp. 135–217, 1987. View at Google Scholar
  34. F. A. Kröeger and H. J. Vink, “Relations between the concentrations of imperfections in crystalline solids,” Solid State Physics, vol. 3, pp. 307–435, 1956. View at Google Scholar