Table of Contents
ISRN Geometry
Volume 2013 (2013), Article ID 379074, 9 pages
http://dx.doi.org/10.1155/2013/379074
Research Article

A Rabbit Hole between Topology and Geometry

CSEM, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia

Received 10 July 2013; Accepted 13 August 2013

Academic Editors: A. Ferrandez, J. Keesling, E. Previato, M. Przanowski, and H. J. Van Maldeghem

Copyright © 2013 David G. Glynn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Topology and geometry should be very closely related mathematical subjects dealing with space. However, they deal with different aspects, the first with properties preserved under deformations, and the second with more linear or rigid aspects, properties invariant under translations, rotations, or projections. The present paper shows a way to go between them in an unexpected way that uses graphs on orientable surfaces, which already have widespread applications. In this way infinitely many geometrical properties are found, starting with the most basic such as the bundle and Pappus theorems. An interesting philosophical consequence is that the most general geometry over noncommutative skewfields such as Hamilton's quaternions corresponds to planar graphs, while graphs on surfaces of higher genus are related to geometry over commutative fields such as the real or complex numbers.