Table of Contents
ISRN Molecular Imaging
Volume 2013, Article ID 386976, 8 pages
http://dx.doi.org/10.1155/2013/386976
Research Article

Ga-68- and Cu-64-Labeled NOTA-Albumin Conjugates for PET Sentinel Lymph Node Imaging

1ROTOP Pharmaka AG, Bautzner Landstraße 400, 01328 Dresden, Germany
2Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
3Department of Nuclear Medicine, University Hospital, “Carl Gustav Carus” Fetscherstraße 74, 01307 Dresden, Germany

Received 17 December 2012; Accepted 3 January 2013

Academic Editors: N. Gillings, P. Lass, and N. Motomura

Copyright © 2013 Eik Schiller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. M. C. Van Der Ploeg, O. E. Nieweg, B. B. R. Kroon et al., “The yield of SPECT/CT for anatomical lymphatic mapping in patients with breast cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 6, pp. 903–909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Vermeeren, R. A. Valdés Olmos, W. Meinhardt et al., “Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma,” Journal of Nuclear Medicine, vol. 50, no. 6, pp. 865–870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Weiss, R. A. Schmid, C. Kunte, B. Konz, and K. Hahn, “First experiences with a new radiopharmaceutical for sentinel lymph node detection in malignant melanoma: 99mTc colloidal rhenium sulphide,” NuklearMedizin, vol. 43, no. 1, pp. 10–15, 2004. View at Google Scholar · View at Scopus
  4. A. E. Hawley, S. S. Davis, and L. Illum, “Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 129–148, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Mariani, L. Moresco, G. Viale et al., “Radioguided sentinel lymph node biopsy in breast cancer surgery,” Journal of Nuclear Medicine, vol. 42, no. 8, pp. 1198–1215, 2001. View at Google Scholar · View at Scopus
  6. H. Vogt, M. Schmidt, R. Bares et al., “Verfahrensanweisung für die nuklearmedizinische wächter-lymphknoten-diagnostik,” Nuklearmedizin, vol. 49, pp. 167–172, 2010. View at Publisher · View at Google Scholar
  7. V. K. Sondak, S. Marzban, C. J. Rich, J. L. Messina, and J. S. Zager, “Identification of melanoma sentinel nodes with lymphoseek: phase III clinical trial results at moffitt cancer center,” Annals of Surgical Oncology, vol. 17, p. S111, 2010. View at Google Scholar
  8. K. K. Limmer, S. P. Povoski, H. Krontiras et al., “Phase III results comparing lymphoseek with blue dye in detection of the sentinel lymph node in breast cancer,” Cancer Research, vol. 69, 3, no. 24, p. 514S, 2009. View at Google Scholar
  9. A. M. Wallace, C. K. Hoh, D. R. Vera, D. D. Darrah, and G. Schulteis, “Lymphoseek: a molecular radiopharmaceutical for sentinel node detection,” Annals of Surgical Oncology, vol. 10, no. 5, pp. 531–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Ganswindt, D. Schilling, A. C. Müller, R. Bares, P. Bartenstein, and C. Belka, “Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas,” International Journal of Radiation Oncology Biology Physics, vol. 79, no. 5, pp. 1364–1372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Heuveling, G. M. W. Visser, M. Baclayon et al., “89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results,” Journal of Nuclear Medicine, vol. 52, no. 10, pp. 1580–1584, 2011. View at Google Scholar
  12. J. Y. Choi, J. M. Jeong, B. C. Yoo et al., “Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography,” Nuclear Medicine and Biology, vol. 38, no. 3, pp. 371–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kühne, Z. Györgydeak, and T. K. Lindhorst, “A simple method for the preparation of glycosyl isothiocyanates,” Synthesis, no. 6, pp. 949–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Thieme, M. Walther, H.-J. Pietzsch et al., “Module-assisted preparation of 64Cu with high specific activity,” Applied Radiation and Isotopes, vol. 70, no. 4, pp. 602–608, 2012. View at Publisher · View at Google Scholar
  15. L. Tafra, A. N. Chua, P. C. Ng, D. Aycock, M. Swanson, and D. Lannin, “Filtered versus unfiltered technetium sulfur colloid in lymphatic mapping: a significant variable in a pig model,” Annals of Surgical Oncology, vol. 6, no. 1, pp. 83–87, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C. L. Ferreira, E. Lamsa, M. Woods et al., “Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals,” Bioconjugate Chemistry, vol. 21, no. 3, pp. 531–536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. E. G. F. Núñez, B. L. Faintuch, R. Teodoro et al., “Influence of colloid particle profile on sentinel lymph node uptake,” Nuclear Medicine and Biology, vol. 36, no. 7, pp. 741–747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Weiss, F. J. Gildehaus, K. Brinkbäumer, M. Makowski, and K. Hahn, “Lymph kinetics with technetium-99m labeled radiopharmaceuticals: animal studies,” NuklearMedizin, vol. 44, no. 4, pp. 156–165, 2005. View at Google Scholar · View at Scopus
  19. N. L. Tilney, “Patterns of lymphatic drainage in the adult laboratory rat,” Journal of Anatomy, vol. 109, no. 3, pp. 369–383, 1971. View at Google Scholar · View at Scopus
  20. W. A. Waddington, M. R. S. Keshtgar, I. Taylor, S. R. Lakhani, M. D. Short, and P. J. Ell, “Radiation safety of the sentinel lymph node technique in breast cancer,” European Journal of Nuclear Medicine, vol. 27, no. 4, pp. 377–391, 2000. View at Google Scholar · View at Scopus
  21. S. J. Ellner, J. Méndez, D. R. Vera, C. K. Hoh, W. L. Ashburn, and A. M. Wallace, “Sentinel lymph node mapping of the colon and stomach using lymphoseek in a pig model,” Annals of Surgical Oncology, vol. 11, no. 7, pp. 674–681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. T. de Paulis, “Drug evaluation: lymphoseek—neoprobe's sentinel lymph node imaging agent for use in cancer patients,” Current Opinion in Investigational Drugs, vol. 7, no. 12, pp. 1100–1107, 2006. View at Google Scholar · View at Scopus
  23. A. M. Wallace, C. K. Hoh, S. J. Ellner, D. D. Darrah, G. Schulteis, and D. R. Vera, “Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping,” Annals of Surgical Oncology, vol. 14, no. 2, pp. 913–921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Schöder, E. C. Glass, A. P. Pecking et al., “Molecular targeting of the lymphovascular system for imaging and therapy,” Cancer and Metastasis Reviews, vol. 25, no. 2, pp. 185–201, 2006. View at Publisher · View at Google Scholar · View at Scopus