ISRN Virology
Volume 2013, Article ID 397243, 12 pages
http://dx.doi.org/10.5402/2013/397243
Review Article
HSV-1 as a Model for Emerging Gene Delivery Vehicles
Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Received 17 April 2013; Accepted 10 May 2013
Academic Editors: A. Cid-Arregui and H. E. Kaufman
Copyright © 2013 Filip Lim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- L. Boto, “Horizontal gene transfer in evolution: facts and challenges,” Proceedings of the Royal Society B, vol. 277, no. 1683, pp. 819–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
- R. Jain, M. C. Rivera, J. E. Moore, and J. A. Lake, “Horizontal gene transfer in microbial genome evolution,” Theoretical Population Biology, vol. 61, no. 4, pp. 489–495, 2002. View at Publisher · View at Google Scholar · View at Scopus
- M. F. Polz, E. J. Alm, and W. P. Hanage, “Horizontal gene transfer and the evolution of bacterial and archaeal population structure,” Trends in Genetics, vol. 29, no. 3, pp. 170–175, 2013. View at Publisher · View at Google Scholar
- P. J. Keeling and J. D. Palmer, “Horizontal gene transfer in eukaryotic evolution,” Nature Reviews Genetics, vol. 9, no. 8, pp. 605–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. Schaack, C. Gilbert, and C. Feschotte, “Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution,” Trends in Ecology and Evolution, vol. 25, no. 9, pp. 537–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
- E. de la Casa-Esperon, “Horizontal transfer and the evolution of host-pathogen interactions,” International Journal of Evolutionary Biology, vol. 2012, Article ID 679045, 9 pages, 2012. View at Publisher · View at Google Scholar
- D. Prangishvili, P. Forterre, and R. A. Garrett, “Viruses of the archaea: a unifying view,” Nature Reviews Microbiology, vol. 4, no. 11, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
- D. Raoult and P. Forterre, “Redefining viruses: lessons from mimivirus,” Nature Reviews Microbiology, vol. 6, no. 4, pp. 315–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
- M. G. Fischer and C. A. Suttle, “A virophage at the origin of large DNA transposons,” Science, vol. 332, no. 6026, pp. 231–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
- H. Liu, Y. Fu, D. Jiang et al., “Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes,” Journal of Virology, vol. 84, no. 22, pp. 11876–11887, 2010. View at Publisher · View at Google Scholar · View at Scopus
- H. Liu, Y. Fu, B. Li et al., “Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes,” BMC Evolutionary Biology, vol. 11, article 276, 2011. View at Publisher · View at Google Scholar
- D. Bouard, N. Alazard-Dany, and F. L. Cosset, “Viral vectors: from virology to transgene expression,” The British Journal of Pharmacology, vol. 157, no. 2, pp. 153–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. A. Kay, J. C. Glorioso, and L. Naldini, “Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics,” Nature Medicine, vol. 7, no. 1, pp. 33–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
- C. E. Thomas, A. Ehrhardt, and M. A. Kay, “Progress and problems with the use of viral vectors for gene therapy,” Nature Reviews Genetics, vol. 4, no. 5, pp. 346–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
- L. Vannucci, M. Lai, F. Chiuppesi, L. Ceccherini-Nelli, and M. Pistello, “Viral vectors: a look back and ahead on gene transfer technology,” New Microbiologica, vol. 36, no. 1, pp. 1–22, 2013. View at Google Scholar
- J. N. Warnock, C. Daigre, and M. Al-Rubeai, “Introduction to viral vectors,” Methods in Molecular Biology, vol. 737, pp. 1–25, 2011. View at Publisher · View at Google Scholar
- S. L. Ginn, I. E. Alexander, M. L. Edelstein, M. R. Abedi, and J. Wixon, “Gene therapy clinical trials worldwide to 2012—an update,” Journal of Gene Medicine, vol. 15, no. 2, pp. 65–77, 2013. View at Publisher · View at Google Scholar
- J. M. Claverie and C. Abergel, “Open questions about giant viruses,” Advances in Virus Research, vol. 85, pp. 25–56, 2013. View at Publisher · View at Google Scholar
- P. de Felipe and M. Izquierdo, “Construction and characterization of pentacistronic retrovirus vectors,” Journal of General Virology, vol. 84, part 5, pp. 1281–1285, 2003. View at Publisher · View at Google Scholar · View at Scopus
- B. W. Carey, S. Markoulaki, J. Hanna et al., “Reprogramming of murine and human somatic cells using a single polycistronic vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 157–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. Szulc, M. Wiznerowicz, M. O. Sauvain, D. Trono, and P. Aebischer, “A versatile tool for conditional gene expression and knockdown,” Nature Methods, vol. 3, no. 2, pp. 109–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
- G. Schiedner, N. Mortal, R. J. Parks et al., “Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity,” Nature Genetics, vol. 18, no. 2, pp. 180–183, 1998. View at Google Scholar · View at Scopus
- A. L. Slusarczyk, A. Lin, and R. Weiss, “Foundations for the design and implementation of synthetic genetic circuits,” Nature Reviews Genetics, vol. 13, no. 6, pp. 406–420, 2012. View at Publisher · View at Google Scholar
- A. C. Forster and G. M. Church, “Towards synthesis of a minimal cell,” Molecular systems biology, vol. 2, p. 45, 2006. View at Google Scholar · View at Scopus
- C. J. A. Sigrist, L. Cerutti, E. de Castro et al., “PROSITE, a protein domain database for functional characterization and annotation,” Nucleic Acids Research, vol. 38, no. 1, pp. D161–D166, 2009. View at Publisher · View at Google Scholar · View at Scopus
- C. D. Smolke, “Building outside of the box: IGEM and the BioBricks foundation,” Nature Biotechnology, vol. 27, no. 12, pp. 1099–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. Wang, J. Zhuang, S. Iyer et al., “Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium,” Nucleic Acids Research, vol. 41, pp. D171–D176, 2013. View at Publisher · View at Google Scholar
- Y. Saeki, C. Fraefel, T. Ichikawa, X. O. Breakefield, and E. A. Chiocca, “Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome,” Molecular Therapy, vol. 3, no. 4, pp. 591–601, 2001. View at Publisher · View at Google Scholar · View at Scopus
- S. J. Advani, R. R. Weichselbaum, R. J. Whitley, and B. Roizman, “Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications,” Clinical Microbiology and Infection, vol. 8, no. 9, pp. 551–563, 2002. View at Publisher · View at Google Scholar · View at Scopus
- E. Berto, A. Bozac, and P. Marconi, “Development and application of replication-incompetent HSV-1-based vectors,” Gene Therapy, vol. 12, supplement 1, pp. S98–S102, 2005. View at Publisher · View at Google Scholar · View at Scopus
- E. A. Burton, Q. Bai, W. F. Goins, and J. C. Glorioso, “Targeting gene expression using HSV vectors,” Advanced Drug Delivery Reviews, vol. 53, no. 2, pp. 155–170, 2001. View at Publisher · View at Google Scholar · View at Scopus
- A. L. Epstein, “HSV-1-derived amplicon vectors: recent technological improvements and remaining difficulties—a review,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 3, pp. 399–410, 2009. View at Google Scholar · View at Scopus
- A. L. Epstein, P. Marconi, R. Argnani, and R. Manservigi, “HSV-1-derived recombinant and amplicon vectors for gene transfer and gene therapy,” Current Gene Therapy, vol. 5, no. 5, pp. 445–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
- D. J. Fink, N. A. DeLuca, M. Yamada, D. P. Wolfe, and J. C. Glorioso, “Design and application of HSV vectors for neuroprotection,” Gene Therapy, vol. 7, no. 2, pp. 115–119, 2000. View at Google Scholar · View at Scopus
- C. Fraefel, P. Marconi, and A. L. Epstein, “Herpes simplex virus type 1-derived recombinant and amplicon vectors,” Methods in Molecular Biology, vol. 737, pp. 303–343, 2011. View at Publisher · View at Google Scholar
- A. R. Frampton Jr., W. F. Goins, K. Nakano, E. A. Burton, and J. C. Glorioso, “HSV trafficking and development of gene therapy vectors with applications in the nervous system,” Gene Therapy, vol. 12, no. 11, pp. 891–901, 2005. View at Publisher · View at Google Scholar · View at Scopus
- W. F. Goins, D. M. Krisky, J. B. Wechuck, D. Wolfe, S. Huang, and J. C. Glorioso, “Generation of replication-competent and -defective HSV vectors,” Cold Spring Harbor Protocols, no. 5, Article ID pdb prot5615, 2011. View at Publisher · View at Google Scholar
- P. Grandi, S. Wang, D. Schuback et al., “HSV-1 virions engineered for specific binding to cell surface receptors,” Molecular Therapy, vol. 9, no. 3, pp. 419–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
- O. C. Hibbitt and R. Wade-Martins, “Delivery of large genomic DNA inserts >100 kb using HSV-1 amplicons,” Current Gene Therapy, vol. 6, no. 3, pp. 325–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
- C. Fraefel, “Gene delivery using helper virus-free HSV-1 amplicon vectors,” Current Protocols in Neuroscience, vol. 4, p. 4.14, 2007. View at Google Scholar · View at Scopus
- R. Manservigi, R. Argnani, and P. Marconi, “HSV recombinant vectors for gene therapy,” Open Virology Journal, vol. 4, pp. 123–156, 2010. View at Publisher · View at Google Scholar
- P. Marconi, R. Manservigi, and A. L. Epstein, “HSV-1-derived helper-independent defective vectors, replicating vectors and amplicon vectors, for the treatment of brain diseases,” Current Opinion in Drug Discovery and Development, vol. 13, no. 2, pp. 169–183, 2010. View at Google Scholar · View at Scopus
- R. L. Neve, “Overview of gene delivery into cells using HSV-1-based vectors,” Current Protocols in Neuroscience, vol. 4, p. 4.12, 2012. View at Google Scholar
- A. Oehmig, C. Fraefel, X. O. Breakefield, and M. Ackermann, “Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus,” Current Gene Therapy, vol. 4, no. 4, pp. 385–408, 2004. View at Google Scholar · View at Scopus
- M. A. Spear, D. Schuback, K. Miyata et al., “HSV-1 amplicon peptide display vector,” Journal of Virological Methods, vol. 107, no. 1, pp. 71–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
- D. Wolfe, A. Niranjan, A. Trichel et al., “Safety and biodistribution studies of an HSV multigene vector following intracranial delivery to non-human primates,” Gene Therapy, vol. 11, no. 23, pp. 1675–1684, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. M. Anesti, P. J. Peeters, I. Royaux, and R. S. Coffin, “Efficient delivery of RNA Interference to peripheral neurons in vivo using herpes simplex virus,” Nucleic Acids Research, vol. 36, no. 14, article e86, 2008. View at Publisher · View at Google Scholar · View at Scopus
- C. E. Lilley and R. S. Coffin, “Construction of multiply disabled herpes simplex viral vectors for gene delivery to the nervous system,” Methods in Molecular Medicine, vol. 76, pp. 33–49, 2003. View at Google Scholar · View at Scopus
- M. C. P. Perez, S. P. Hunt, R. S. Coffin, and J. A. Palmer, “Comparative analysis of genomic HSV vectors for gene delivery to motor neurons following peripheral inoculation in vivo,” Gene Therapy, vol. 11, no. 13, pp. 1023–1032, 2004. View at Publisher · View at Google Scholar · View at Scopus
- B. Roizman and B. Taddeo, “The strategy of herpes simplex virus replication and takeover of the host cell,” in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, 2007. View at Google Scholar
- J. Wysocka and W. Herr, “The herpes simplex virus VP16-induced complex: the makings of a regulatory switch,” Trends in Biochemical Sciences, vol. 28, no. 6, pp. 294–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
- B. Roizman, “The checkpoints of viral gene expression in productive and latent infection: The role of the HDAC/CoREST/LSD1/REST repressor complex,” Journal of Virology, vol. 85, no. 15, pp. 7474–7482, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. J. Macdonald, H. H. Mostafa, L. A. Morrison, and D. J. Davido, “Genome sequence of herpes simplex virus 1 strain KOS,” Journal of Virology, vol. 86, no. 11, pp. 6371–6372, 2012. View at Publisher · View at Google Scholar
- S. J. Macdonald, H. H. Mostafa, L. A. Morrison, and D. J. Davido, “Genome sequence of herpes simplex virus 1 strain McKrae,” Journal of Virology, vol. 86, no. 17, pp. 9540–9541, 2012. View at Publisher · View at Google Scholar
- D. J. McGeoch, M. A. Dalrymple, A. J. Davison et al., “The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1,” Journal of General Virology, vol. 69, part 7, pp. 1531–1574, 1988. View at Google Scholar
- P. Norberg, S. Tyler, A. Severini, R. Whitley, J. Å. Liljeqvist, and T. Bergström, “A genome-wide comparative evolutionary analysis of herpes simplex virus type 1 and varicella zoster virus,” PLoS ONE, vol. 6, no. 7, Article ID e22527, 2011. View at Publisher · View at Google Scholar · View at Scopus
- M. L. Szpara, L. Parsons, and L. W. Enquist, “Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations,” Journal of Virology, vol. 84, no. 10, pp. 5303–5313, 2010. View at Publisher · View at Google Scholar · View at Scopus
- T. A. Stavropoulos and C. A. Strathdee, “An enhanced packaging system for helper-dependent herpes simplex virus vectors,” Journal of Virology, vol. 72, no. 9, pp. 7137–7143, 1998. View at Google Scholar · View at Scopus
- Y. Saeki, T. Ichikawa, A. Saeki et al., “Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors,” Human Gene Therapy, vol. 9, no. 18, pp. 2787–2794, 1998. View at Google Scholar · View at Scopus
- B. C. Horsburgh, M. M. Hubinette, D. Qiang, M. L. E. MacDonald, and F. Tufaro, “Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes,” Gene Therapy, vol. 6, no. 5, pp. 922–930, 1999. View at Publisher · View at Google Scholar · View at Scopus
- M. Tanaka, H. Kagawa, Y. Yamanashi, T. Sata, and Y. Kawaguchi, “Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo,” Journal of Virology, vol. 77, no. 2, pp. 1382–1391, 2003. View at Publisher · View at Google Scholar · View at Scopus
- W. W. Gierasch, D. L. Zimmerman, S. L. Ward, T. K. VanHeyningen, J. D. Romine, and D. A. Leib, “Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS,” Journal of Virological Methods, vol. 135, no. 2, pp. 197–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
- C. W. Knopf, O. Zavidij, I. Rezuchova, and J. Rajčáni, “Evaluation of the T-REx™ transcription switch for conditional expression and regulation of HSV-1 vectors,” Virus Genes, vol. 36, no. 1, pp. 55–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
- Y. Zhang, F. Buchholz, J. P. P. Muyrers, and A. Francis Stewart, “A new logic for DNA engineering using recombination in Escherichia coli,” Nature Genetics, vol. 20, no. 2, pp. 123–128, 1998. View at Publisher · View at Google Scholar · View at Scopus
- S. Y. Kim, S. K. Horrigan, J. L. Altenhofen, Z. H. Arbieva, R. Hoffman, and C. A. Westbrook, “Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells,” Genome Research, vol. 8, no. 4, pp. 404–412, 1998. View at Google Scholar · View at Scopus
- G. Campadelli-Fiume and L. Menotti, “Entry of alphaherpesviruses into the cell,” in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, 2007. View at Google Scholar
- J. M. Taylor, E. Lin, N. Susmarski et al., “Alternative entry receptors for herpes simplex virus and their roles in disease,” Cell Host and Microbe, vol. 2, no. 1, pp. 19–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
- J. G. Stevens, E. K. Wagner, and G. B. Devi-Rao, “RNA complementary to a herpesvirus α gene mRNA is prominent in latently infected neurons,” Science, vol. 235, no. 4792, pp. 1056–1059, 1987. View at Google Scholar · View at Scopus
- R. W. Honess and B. Roizman, “Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins,” Journal of Virology, vol. 14, no. 1, pp. 8–19, 1974. View at Google Scholar · View at Scopus
- K. P. Anderson, R. H. Costa, L. E. Holland, and E. K. Wagner, “Characterization of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis,” Journal of Virology, vol. 34, no. 1, pp. 9–27, 1980. View at Google Scholar · View at Scopus
- R. J. Watson and J. B. Clements, “A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis,” Nature, vol. 285, no. 5763, pp. 329–330, 1980. View at Google Scholar · View at Scopus
- D. F. Gaffney, J. Mclauchlan, J. L. Whitton, and J. B. Clements, “A modular system for the assay of transcription regulatory signals: the sequence TAATGARAT is required for herpes simplex virus immediate early gene activation,” Nucleic Acids Research, vol. 13, no. 21, pp. 7847–7863, 1985. View at Publisher · View at Google Scholar · View at Scopus
- S. Mackem and B. Roizman, “Differentiation between alpha promoter and regulator regions of herpes simplex virus 1: the functional domains and sequence of a movable alpha regulator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 16, pp. 4917–4921, 1982. View at Google Scholar · View at Scopus
- A. A. Oroskar and G. S. Read, “Control of mRNA stability by the virion host shutoff function of herpes simplex virus,” Journal of Virology, vol. 63, no. 5, pp. 1897–1906, 1989. View at Google Scholar · View at Scopus
- A. Hill, P. Jugovic, I. York et al., “Herpes simplex virus turns off the TAP to evade host immunity,” Nature, vol. 375, no. 6530, pp. 411–415, 1995. View at Publisher · View at Google Scholar
- J. G. Stevens, “Human herpesviruses: a consideration of the latent state,” Microbiological Reviews, vol. 53, no. 3, pp. 318–332, 1989. View at Google Scholar · View at Scopus
- I. Steiner and P. G. E. Kennedy, “Molecular biology of herpes simplex virus type 1 latency in the nervous system,” Molecular Neurobiology, vol. 7, no. 2, pp. 137–159, 1993. View at Publisher · View at Google Scholar · View at Scopus
- C. Jones, “Herpes simplex virus type 1 and bovine herpesvirus 1 latency,” Clinical Microbiology Reviews, vol. 16, no. 1, pp. 79–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
- G. C. Perng and C. Jones, “Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2010, Article ID 262415, 18 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
- R. H. Lachmann, M. Sadarangani, H. R. Atkinson, and S. Efstathiou, “An analysis of herpes simplex virus gene expression during latency establishment and reactivation,” Journal of General Virology, vol. 80, part 5, pp. 1271–1282, 1999. View at Google Scholar · View at Scopus
- C. M. Preston, “Repression of viral transcription during herpes simplex virus latency,” Journal of General Virology, vol. 81, part 1, pp. 1–19, 2000. View at Google Scholar · View at Scopus
- J. R. Kent, W. Kang, C. G. Miller, and N. W. Fraser, “Herpes simplex virus latency-associated transcript gene function,” Journal of NeuroVirology, vol. 9, no. 3, pp. 285–290, 2003. View at Google Scholar · View at Scopus
- J. L. Umbach, M. F. Kramer, I. Jurak, H. W. Karnowski, D. M. Coen, and B. R. Cullen, “MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs,” Nature, vol. 454, no. 7205, pp. 780–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
- A. Gupta, J. J. Gartner, P. Sethupathy, A. G. Hatzigeorgiou, and N. W. Fraser, “Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript,” Nature, vol. 442, no. 7098, pp. 82–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
- Y. Nishiyama, “Herpesvirus genes: molecular basis of viral replication and pathogenicity,” Nagoya Journal of Medical Science, vol. 59, no. 3-4, pp. 107–119, 1996. View at Google Scholar · View at Scopus
- N. A. DeLuca, A. M. McCarthy, and P. A. Schaffer, “Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4,” Journal of Virology, vol. 56, no. 2, pp. 558–570, 1985. View at Google Scholar · View at Scopus
- A. M. McCarthy, L. McMahan, and P. A. Schaffer, “Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient,” Journal of Virology, vol. 63, no. 1, pp. 18–27, 1989. View at Google Scholar · View at Scopus
- L. A. Samaniego, A. L. Webb, and N. A. DeLuca, “Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4,” Journal of Virology, vol. 69, no. 9, pp. 5705–5715, 1995. View at Google Scholar · View at Scopus
- P. A. Johnson, A. Miyanohara, F. Levine, T. Cahill, and T. Friedmann, “Cytotoxicity of a replication-defective mutant of herpes simplex virus type I,” Journal of Virology, vol. 66, no. 5, pp. 2952–2965, 1992. View at Google Scholar · View at Scopus
- P. A. Johnson, M. J. Wang, and T. Friedmann, “Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function,” Journal of Virology, vol. 68, no. 10, pp. 6347–6362, 1994. View at Google Scholar · View at Scopus
- N. Wu, S. C. Watkins, P. A. Schaffer, and N. A. DeLuca, “Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22,” Journal of Virology, vol. 70, no. 9, pp. 6358–6369, 1996. View at Google Scholar · View at Scopus
- D. M. Krisky, D. Wolfe, W. F. Coins et al., “Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons,” Gene Therapy, vol. 5, no. 12, pp. 1593–1603, 1998. View at Google Scholar · View at Scopus
- D. J. Fink, J. Wechuck, M. Mata et al., “Gene therapy for pain: results of a phase I clinical trial,” Annals of Neurology, vol. 70, no. 2, pp. 207–212, 2011. View at Publisher · View at Google Scholar
- D. J. Fink and D. Wolfe, “Gene therapy for pain: a perspective,” Pain Management, vol. 1, no. 5, pp. 379–381, 2011. View at Google Scholar
- L. A. Samaniego, N. Wu, and N. A. DeLuca, “The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27,” Journal of Virology, vol. 71, no. 6, pp. 4614–4625, 1997. View at Google Scholar · View at Scopus
- L. A. Samaniego, L. Neiderhiser, and N. A. DeLuca, “Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins,” Journal of Virology, vol. 72, no. 4, pp. 3307–3320, 1998. View at Google Scholar · View at Scopus
- C. M. Preston, R. Mabbs, and M. J. Nicholl, “Construction and characterization of herpex simplex virus type 1 mutants with conditional defects in immediate early gene expression,” Virology, vol. 229, no. 1, pp. 228–239, 1997. View at Publisher · View at Google Scholar · View at Scopus
- W. Batterson and B. Roizman, “Characterization of the herpes simplex virion-associated factor responsible for the induction of α genes,” Journal of Virology, vol. 46, no. 2, pp. 371–377, 1983. View at Google Scholar · View at Scopus
- C. I. Ace, T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston, “Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression,” Journal of Virology, vol. 63, no. 5, pp. 2260–2269, 1989. View at Google Scholar · View at Scopus
- J. R. Smiley and J. Duncan, “Truncation of the C-terminal acidic transcriptional activation domain of herpes simplex virus VP16 produces a phenotype similar to that of the in 1814 linker insertion mutation,” Journal of Virology, vol. 71, no. 8, pp. 6191–6193, 1997. View at Google Scholar · View at Scopus
- I. Steiner, J. G. Spivack, S. L. Deshmane, C. I. Ace, C. M. Preston, and N. W. Fraser, “A herpes simplex virus type 1 mutant containing a nontransducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia,” Journal of Virology, vol. 64, no. 4, pp. 1630–1638, 1990. View at Google Scholar · View at Scopus
- M. McFarlane, J. I. Daksis, and C. M. Preston, “Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65,” Journal of General Virology, vol. 73, part 2, pp. 285–292, 1992. View at Google Scholar · View at Scopus
- S. K. Thomas, C. E. Lilley, D. S. Latchman, and R. S. Coffin, “Equine herpesvirus 1 gene 12 can substitute for vmw65 in the growth of herpes simplex virus (HSV) type 1, allowing the generation of optimized cell lines for the propagation of HSV vectors with multiple immediate-early gene defects,” Journal of Virology, vol. 73, no. 9, pp. 7399–7409, 1999. View at Google Scholar · View at Scopus
- C. E. Lilley, F. Groutsi, Z. Han et al., “Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo,” Journal of Virology, vol. 75, no. 9, pp. 4343–4356, 2001. View at Publisher · View at Google Scholar · View at Scopus
- N. Frenkel, “The history of the HSV amplicon: from naturally occurring defective genomes to engineered amplicon vectors,” Current Gene Therapy, vol. 6, no. 3, pp. 277–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
- R. R. Spaete and N. Frenkel, “The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector,” Cell, vol. 30, no. 1, pp. 295–304, 1982. View at Google Scholar · View at Scopus
- R. R. Spaete and N. Frenkel, “The herpes simplex virus amplicon: analyses of cis-acting replication functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 3, pp. 694–698, 1985. View at Google Scholar · View at Scopus
- A. D. Kwong and N. Frenkel, “Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences,” Journal of Virology, vol. 51, no. 3, pp. 595–603, 1984. View at Google Scholar · View at Scopus
- R. Wade-Martins, Y. Saeki, and E. A. Chiocca, “Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells,” Molecular Therapy, vol. 7, no. 5, part 1, pp. 604–612, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. Gimenez-Cassina, R. Wade-Martins, S. Gomez-Sebastian, J. C. Corona, F. Lim, and J. Diaz-Nido, “Infectious delivery and long-term persistence of transgene expression in the brain by a 135-kb iBAC-FXN genomic DNA expression vector,” Gene Therapy, vol. 18, no. 10, pp. 1015–1019, 2011. View at Publisher · View at Google Scholar
- A. Winkeler, M. Sena-Esteves, L. E. Paulis et al., “Switching on the lights for gene therapy,” PloS ONE, vol. 2, no. 6, article e528, 2007. View at Google Scholar · View at Scopus
- K. M. Johnston, D. Jacoby, P. A. Pechan et al., “HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells,” Human Gene Therapy, vol. 8, no. 3, pp. 359–370, 1997. View at Google Scholar · View at Scopus
- S. Wang and J. M. Vos, “A hybrid herpesvirus infectious vector based on Epstein-Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo,” Journal of Virology, vol. 70, no. 12, pp. 8422–8430, 1996. View at Google Scholar · View at Scopus
- M. M. P. Lufino, R. Manservigi, and R. Wade-Martins, “An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency,” Nucleic Acids Research, vol. 35, no. 15, article e98, 2007. View at Publisher · View at Google Scholar · View at Scopus
- D. Moralli, K. M. Simpson, R. Wade-Martins, and Z. L. Monaco, “A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors,” EMBO Reports, vol. 7, no. 9, pp. 911–918, 2006. View at Publisher · View at Google Scholar · View at Scopus
- M. M. P. Lufino, P. A. H. Edser, and R. Wade-Martins, “Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression,” Molecular Therapy, vol. 16, no. 9, pp. 1525–1538, 2008. View at Publisher · View at Google Scholar · View at Scopus
- N. Savard, F. L. Cosset, and A. L. Epstein, “Defective herpes simplex virus type 1 vectors harboring gag, pol, and env genes can be used to rescue defective retrovirus vectors,” Journal of Virology, vol. 71, no. 5, pp. 4111–4117, 1997. View at Google Scholar · View at Scopus
- P. de Felipe, M. Izquierdo, F. Wandosell, and F. Lim, “Integrating retroviral cassette extends gene delivery of HSV-1 expression vectors to dividing cells,” BioTechniques, vol. 31, no. 2, pp. 394–405, 2001. View at Google Scholar · View at Scopus
- M. Sena-Esteves, Y. Saeki, S. M. Camp, E. A. Chiocca, and X. O. Breakefield, “Single-step conversion of cells to retrovirus vector producers with herpes simplex virus-Epstein-Barr virus hybrid amplicons,” Journal of Virology, vol. 73, no. 12, pp. 10426–10439, 1999. View at Google Scholar · View at Scopus
- A. I. Geller, K. Keyomarsi, J. Bryan, and A. B. Pardee, “An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 22, pp. 8950–8954, 1990. View at Publisher · View at Google Scholar · View at Scopus
- F. Lim, D. Hartley, P. Starr et al., “Generation of high-titer defective HSV-1 vectors using an IE 2 deletion mutant and quantitative study of expression in cultured cortical cells,” BioTechniques, vol. 20, no. 3, pp. 460–469, 1996. View at Google Scholar · View at Scopus
- X. Wu, Y. Leduc, M. Cynader, and F. Tufaro, “Examination of conditions affecting the efficiency of HVS-1 amplicon packaging,” Journal of Virological Methods, vol. 52, no. 1-2, pp. 219–229, 1995. View at Publisher · View at Google Scholar · View at Scopus
- R. L. Neve and F. Lim, “Generation of high-titer defective HSV-1 vectors,” Current Protocols in Neuroscience, vol. 4, p. 4.13, 2013. View at Google Scholar · View at Scopus
- F. Lim and R. L. Neve, “Generation of high-titer defective HSV-1 vectors,” Current Protocols in Neuroscience, vol. 4, p. 4.13, 2001. View at Google Scholar · View at Scopus
- D. Chaudhury, J. J. Walsh, A. K. Friedman et al., “Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons,” Nature, vol. 493, no. 7433, pp. 532–536. View at Publisher · View at Google Scholar
- H. E. Covington III, M. K. Lobo, I. Maze et al., “Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex,” Journal of Neuroscience, vol. 30, no. 48, pp. 16082–16090, 2010. View at Publisher · View at Google Scholar · View at Scopus
- S. Y. Kim, A. Adhikari, S. Y. Lee et al., “Diverging neural pathways assemble a behavioural state from separable features in anxiety,” Nature, vol. 496, no. 7444, pp. 219–223. View at Publisher · View at Google Scholar
- M. K. Lobo, H. E. Covington, D. Chaudhury et al., “Cell type—specific loss of BDNF signaling mimics optogenetic control of cocaine reward,” Science, vol. 330, no. 6002, pp. 385–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
- F. Lim, G. M. Palomo, C. Mauritz et al., “Functional recovery in a Friedreich's ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector,” Molecular Therapy, vol. 15, no. 6, pp. 1072–1078, 2007. View at Publisher · View at Google Scholar · View at Scopus
- C. Logvinoff and A. L. Epstein, “Genetic engineering of herpes simplex virus and vector genomes carrying loxP sites in cells expressing Cre recombinase,” Virology, vol. 267, no. 1, pp. 102–110, 2000. View at Publisher · View at Google Scholar
- C. Zaupa, V. Revol-Guyot, and A. L. Epstein, “Improved packaging system for generation of high-level noncytotoxic HSV-1 amplicon vectors using Cre-loxP site-specific recombination to delete the packaging signals of defective helper genomes,” Human Gene Therapy, vol. 14, no. 11, pp. 1049–1063, 2003. View at Publisher · View at Google Scholar
- C. Cunningham and A. J. Davison, “A cosmid-based system for constructing mutants of herpes simplex virus type 1,” Virology, vol. 197, no. 1, pp. 116–124, 1993. View at Publisher · View at Google Scholar · View at Scopus
- C. Fraefel, S. Song, F. Lim et al., “Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells,” Journal of Virology, vol. 70, no. 10, pp. 7190–7197, 1996. View at Google Scholar · View at Scopus
- K. G. Grant, D. M. Krisky, M. M. Ataai, and J. C. Glorioso, “Engineering cell lines for production of replication defective HSV-1 gene therapy vectors,” Biotechnology and Bioengineering, vol. 102, no. 4, pp. 1087–1097, 2009. View at Publisher · View at Google Scholar · View at Scopus
- S. K. Weller, Ed., Alphaherpesviruses: Molecular Virology, Caister Academic Press, Norfolk, UK, 2011.
- M. K. Howard, T. Kershaw, B. Gibb et al., “High efficiency gene transfer to the central nervous system of rodents and primates using herpes virus vectors lacking functional ICP27 and ICP34.5,” Gene Therapy, vol. 5, no. 8, pp. 1137–1147, 1998. View at Google Scholar · View at Scopus
- W. R. Sacks, C. C. Greene, D. P. Aschman, and P. A. Schaffer, “Herpes simpex virus type 1 ICP27 is an essential regulatory protein,” Journal of Virology, vol. 55, no. 3, pp. 796–805, 1985. View at Google Scholar · View at Scopus
- I. L. Smith, M. A. Hardwicke, and R. M. Sandri-Goldin, “Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression,” Virology, vol. 186, no. 1, pp. 74–86, 1992. View at Publisher · View at Google Scholar · View at Scopus
- N. A. Deluca and P. A. Schaffer, “Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides,” Nucleic Acids Research, vol. 15, no. 11, pp. 4491–4511, 1987. View at Publisher · View at Google Scholar · View at Scopus
- Y. H. Su, X. Zhang, X. Wang, N. W. Fraser, and T. M. Block, “Evidence that the immediate-early gene product ICP4 is necessary for the genome of the herpes simplex virus type 1 ICP4 deletion mutant strain d120 to circularize in infected cells,” Journal of Virology, vol. 80, no. 23, pp. 11589–11597, 2006. View at Publisher · View at Google Scholar · View at Scopus
- K. H. Choi, K. H. Kim, and H. J. Kim, “Evaluation of tTA-mediated gene activation system on human cytomegalovirus and herpes simplex virus type-1 infections,” Archives of Pharmacal Research, vol. 23, no. 3, pp. 257–260, 2000. View at Google Scholar · View at Scopus
- M. E. Fotaki, J. R. Pink, and J. Mous, “Tetracycline-responsive gene expression in mouse brain after amplicon-mediated gene transfer,” Gene Therapy, vol. 4, no. 9, pp. 901–908, 1997. View at Google Scholar · View at Scopus
- U. Herrlinger, P. A. Pechan, A. H. Jacobs et al., “HSV-1 infected cell proteins influence tetracycline-regulated transgene expression,” Journal of Gene Medicine, vol. 2, no. 5, pp. 379–389, 2000. View at Google Scholar · View at Scopus
- S. I. Miyatake, A. Iyer, R. L. Martuza, and S. D. Rabkin, “Transcriptional targeting of herpes simplex virus for cell-specific replication,” Journal of Virology, vol. 71, no. 7, pp. 5124–5132, 1997. View at Google Scholar · View at Scopus
- P. A. Pechan, M. Fotaki, R. L. Thompson et al., “A novel “piggyback” packaging system for herpes simplex virus amplicon vectors,” Human Gene Therapy, vol. 7, no. 16, pp. 2003–2013, 1996. View at Google Scholar · View at Scopus
- J. T. Lester and N. A. DeLuca, “Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells,” Journal of Virology, vol. 85, no. 12, pp. 5733–5744, 2011. View at Publisher · View at Google Scholar · View at Scopus
- N. D. Stow and E. C. Stow, “Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110,” Journal of General Virology, vol. 67, part 12, pp. 2571–2585, 1986. View at Google Scholar · View at Scopus
- W. Cai, T. L. Astor, L. M. Liptak, C. Cho, D. M. Coen, and P. A. Schaffer, “The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency,” Journal of Virology, vol. 67, no. 12, pp. 7501–7512, 1993. View at Google Scholar · View at Scopus
- W. P. Halford and P. A. Schaffer, “Optimized viral dose and transient immunosuppression enable herpes simplex virus ICP0-null mutants to establish wild-type levels of latency in vivo,” Journal of Virology, vol. 74, no. 13, pp. 5957–5967, 2000. View at Publisher · View at Google Scholar · View at Scopus
- D. A. Leib, D. M. Coen, C. L. Bogard et al., “Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency,” Journal of Virology, vol. 63, no. 2, pp. 759–768, 1989. View at Google Scholar · View at Scopus
- W. R. Sacks and P. A. Schaffer, “Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture,” Journal of Virology, vol. 61, no. 3, pp. 829–839, 1987. View at Google Scholar · View at Scopus
- W. P. Halford and P. A. Schaffer, “ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency,” Journal of Virology, vol. 75, no. 7, pp. 3240–3249, 2001. View at Publisher · View at Google Scholar · View at Scopus
- F. Yao and P. A. Schaffer, “An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1,” Journal of Virology, vol. 69, no. 10, pp. 6249–6258, 1995. View at Google Scholar · View at Scopus
- D. Cuchet, R. Ferrera, P. Lomonte, and A. L. Epstein, “Characterization of antiproliferative and cytotoxic properties of the HSV-1 immediate-early ICPo protein,” Journal of Gene Medicine, vol. 7, no. 9, pp. 1187–1199, 2005. View at Publisher · View at Google Scholar · View at Scopus
- R. D. Everett, W. C. Earnshaw, J. Findlay, and P. Lomonte, “Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110,” EMBO Journal, vol. 18, no. 6, pp. 1526–1538, 1999. View at Google Scholar · View at Scopus
- W. E. Hobbs II and N. A. DeLuca, “Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0,” Journal of Virology, vol. 73, no. 10, pp. 8245–8255, 1999. View at Google Scholar · View at Scopus
- W. J. Bowers, D. F. Howard, A. I. Brooks, M. W. Halterman, and H. J. Federoff, “Expression of vhs and VP16 during HSV-1 helper virus-free amplicon packaging enhances titers,” Gene Therapy, vol. 8, no. 2, pp. 111–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
- K. Igarashi, R. Fawl, R. J. Roller, and B. Roizman, “Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis,” Journal of Virology, vol. 67, no. 4, pp. 2123–2132, 1993. View at Google Scholar · View at Scopus
- H. Berthomme, S. Fournel, and A. L. Epstein, “Increased transcomplementation properties of plasmids carrying HSV-1 origin of replication and packaging signals,” Virology, vol. 216, no. 2, pp. 437–443, 1996. View at Publisher · View at Google Scholar · View at Scopus