Table of Contents
ISRN Nutrition
Volume 2013, Article ID 403792, 19 pages
Review Article

The Use of Transcriptomics to Unveil the Role of Nutrients in Mammalian Liver

1Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain
2CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain

Received 14 July 2013; Accepted 4 August 2013

Academic Editors: P. Crenn and R. Moore-Carrasco

Copyright © 2013 Jesús Osada. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.