Table of Contents
ISRN Civil Engineering
Volume 2013, Article ID 408961, 8 pages
http://dx.doi.org/10.1155/2013/408961
Research Article

Liquefaction-Induced Lateral Deformations Computational Assessment during Tohoku Earthquake

1Dipartimento Economia e Tecnologia, Università di San Marino, Via Salita alla Rocca 44, 47890 San Marino, San Marino
2Dipartimento Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy

Received 11 June 2013; Accepted 3 July 2013

Academic Editors: F. Hernández-Olivares and B. Uy

Copyright © 2013 Davide Forcellini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Research Institute for earth Science and Disaster Prevention (NIED) Japan, 2011 Off the Pacific Coast of Tohoku earthquake, Strong Ground Motion.
  2. I. Towhata, H. Goto, M. Kazama et al., “NEWS on Gigantic Tohoku Pacific Earthquake in Japan,” April Issue of ISSMGE Bulletin, 2011.
  3. J. Meneses and P. Arduino, Preliminary Observations of the Effects of Ground Failure and Tsunami on the Major Ports of Ibaraki Prefecture, May 17, 2011, Geotechnical Extreme Events Reconnaissance (GEER).
  4. S. Bhattacharya, M. Hyodo, K. Goda, T. Tazoh, and C. A. Taylor, “Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 11, pp. 1618–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. Ashford, R. W. Boulanger, J. L. Donahue, and J. P. Stewart, “Geotechnical Quick Report on the Kanto Plain Region during the March 11, 2011, Off Pacific Coast of Tohoku Earthquake, Japan,” GEER Association Report No GEER-025a, Geotechnical Extreme Events Reconnaissance (GEER), 2011. View at Google Scholar
  6. K. Tokimatsu and K. Katsumata, “Liquefaction-induced damage to buildings in Urayasu city during the 2011 Tohoku Pacific earthquake,” in Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, March 2012.
  7. H. Kishida, “Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering,” Soils Foundation, vol. 6, no. 1, pp. 71–88, 1966. View at Google Scholar
  8. Y. Ohsaki, “Niigata earthquake, 1964 building damage and soil condition,” Soils Foundations, vol. 6, no. 2, pp. 14–37, 1966. View at Google Scholar
  9. H. B. Seed and I. M. Idriss, “Analysis of soil liquefaction: niigata earthquake,” Journal of Soil Mechanics and Foundations, vol. 93, no. 3, pp. 83–108, 1967. View at Google Scholar
  10. Y. Yoshimi and K. Tokimatsu, “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, vol. 17, no. 1, pp. 23–38, 1977. View at Google Scholar · View at Scopus
  11. K. Tokimatsu, S. Midorikawa, S. Tamura, S. Kuwayama, and A. Abe, “Preliminary report on the geotechnical aspects of the Philippine earthquake of July 16, 1990,” in Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 357–364, University of Missouri-Rolla, St. Louis, Mo, USA, 1991.
  12. T. Adachi, S. Iwai, M. Yasui, and Y. Sato, “Settlement of inclination of reinforced concrete buildings in Dagupan city due to liquefaction during 1990 Philippine earthquake,” in Proceedings of the 10th World Conference on Earthquake Engineering, pp. 147–152, Balkema, Rotterdam, The Netherlands, 1992.
  13. K. Ishihara, A. A. Acacio, and I. Towhata, “Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake,” Soils and Foundations, vol. 33, no. 1, pp. 133–154, 1993. View at Google Scholar · View at Scopus
  14. K. Tokimatsu, H. Kojimaa, S. Kuwayama, A. Abe, and S. Midorikawa, “Liquefaction-induced damage to buildings in 1990 Luzon Earthquake,” Journal of Geotechnical Engineering, vol. 120, no. 2, pp. 290–307, 1994. View at Google Scholar · View at Scopus
  15. Earthquake Engineering Research Institute (EERI), “Kocaeli. Turkey, earthquake of august 17, 1999 reconnaissance report,” Earthquake Spectra, 2000.
  16. Earthquake Engineering Research Institute (EERI), “Chi-chi, Taiwan, earthquake of September 21, 1999, reconnaissance report,” Earthquake Spectra, 2001.
  17. J. H. Schmertmann, “Measurement of In-Situ strength,” in Proceedings of the Conference on In-Situ Measurement of Soil Properties, pp. 55–138, American Society of Civil Engineers, 1975.
  18. J. H. Schmertmann, J. P. Hartmann, and P. R. Brown, “Improved strain influence factor diagrams,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. 8, pp. 1131–1135, 1978. View at Google Scholar
  19. A. R. S. S. Bazaraa, Use of the standard penetration test for estimating settlements of shallow foundations on sand [Ph.D. thesis], University of Illinois, Champaign-Urbana, Ill, USA, 1967.
  20. H. J. Gibbs and W. G. Holtz, “Research on determining the density of sands by spoon penetration testing,” in Proceedings of the 4th International Conference on Soil Mechanics, vol. 1, pp. 35–39, London, UK, 1957.
  21. M. A. Sherif, I. Ishibashi, and C. Tsuchiya, “Pore pressure prediction during Earthquake Loadings,” Soils and Foundations, vol. 18, no. 4, pp. 19–30, 1978. View at Google Scholar · View at Scopus
  22. T. L. Youd and D. M. Perkins, “Mapping liquefaction-induced ground failure potential,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. 4, pp. 433–446, 1978. View at Google Scholar · View at Scopus
  23. H. B. Seed and I. M. Idriss, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Geotechnical Engineering Division, ASCE, vol. 97, no. 9, pp. 1249–1273, 1971. View at Google Scholar · View at Scopus
  24. H. B. Seed and I. M. Idriss, Ground Motions and Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, Calif, USA, 1982.
  25. M. K. Yegian and R. V. Withman, “Risk analysis for ground failure by liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. GT7, pp. 921–938, 1978. View at Google Scholar
  26. K. Tokimatsu and Y. Yoshimi, “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, vol. 23, no. 4, pp. 56–74, 1983. View at Google Scholar · View at Scopus
  27. T. Iwasaki, T. Arakawa, and K.-I. Tokida, “Simplified procedures for assessing soil liquefaction during earthquakes,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 3, no. 1, pp. 49–58, 1984. View at Google Scholar · View at Scopus
  28. T. Iwasaki, F. Tatsuoka, K. Tokida, and S. Yasuda, “A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan,” in Proceedings of the 2nd International Conference on Microzonation for Safer Construction—Research and Application, pp. 885–896, San Francisco, Calif, USA, December 1978.
  29. H. B. Seed, K. Tokimatsu, L. F. Harder, and R. M. Chung, “The influence of SPT procedures in soil liquefaction resistance evaluations,” Journal of Geotechnical Engineering, vol. 111, no. 12, pp. 1425–1445, 1985. View at Google Scholar · View at Scopus
  30. R. D. Andrus and K. H. Stokoe II, “Liquefaction resistance based on shear wave velocity,” in Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Conference for Earthquake Engineering Research, pp. 89–128, State University of New York at Buffalo, 1997.
  31. T. Crespellani, R. Nardi, and C. Simoncini, La liquefazione del terreno in condizioni sismiche, Zanichelli, 1988.
  32. S. G. Monaco, Liquefazione dei terreni in condizioni sismiche, EPC libri, 2008.
  33. Eurocode 8 (UNI EN, 1998-5:2005), part 5, appendix B.
  34. T. L. Youd and I. M. Idriss, “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 4, pp. 297–313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation, User Command-Language Manual,” Pacific Earthquake Engineering Research Center, University of California, Berkeley, OpenSees version 2.0, 2009, http://opensees.berkeley.edu.
  36. A. H. C. Chan, A unified finite element solution to static and dynamic problems in geomechanics [Ph.D. thesis], University College of Swansea, Swansea, UK, 1988.
  37. O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul, and T. Shiomi, “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems,” Proceedings of Royal Society of London A, vol. 429, no. 1877, pp. 285–309, 1990. View at Google Scholar · View at Scopus
  38. J. H. Prevost, “A simple plasticity theory for frictional cohesionless soils,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 4, no. 1, pp. 9–17, 1985. View at Google Scholar · View at Scopus
  39. E. Parra, Numerical modelling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems [Ph.D. thesis], Department of Civil Engineering, Renseealear Polytechnic Institute Troy, Troy, NY, USA, 1996.
  40. Z. Yang, Numerical modeling of earthquake site response including dilation and liquefaction [Ph.D. thesis], Columbia University, New York, NY, USA, 2000.
  41. Z. Yang and A. Elgamal, “Influence of permeability on liquefaction-induced shear deformation,” Journal of Engineering Mechanics, vol. 128, no. 7, pp. 720–729, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Yang, A. Elgamal, and E. Parra, “Computational model for cyclic mobility and associated shear deformation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 12, pp. 1119–1127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Elgamal, E. Parra, Z. Yang, and K. Adalier, “Numerical analysis of embankment foundation liquefaction countermeasures,” Journal of Earthquake Engineering, vol. 6, no. 4, pp. 447–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Elgamal, Z. Yang, E. Parra, and A. Ragheb, “Modeling of cyclic mobility in saturated cohesionless soils,” International Journal of Plasticity, vol. 19, no. 6, pp. 883–905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Elgamal, J. Lu, and D. Forcellini, “Mitigation of liquefaction-induced lateral deformation in a sloping stratum: three-dimensional numerical simulation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 11, pp. 1672–1682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Forcellini and A. M. Tarantino, “Countermeasures assessment of liquefaction-induced lateral deformation in a slope ground system,” Journal of Engineering, vol. 2013, Article ID 183068, 9 pages, 2013. View at Publisher · View at Google Scholar
  47. J. Lu, A. Elgamal, and Z. Yang, OpenSeesPL: 3D Lateral Pile-Ground Interaction, User Manual, Beta 1.0, 2011.