Table of Contents
ISRN Optics
Volume 2013 (2013), Article ID 419507, 8 pages
http://dx.doi.org/10.1155/2013/419507
Research Article

Terahertz Frequency Continuous-Wave Spectroscopy and Imaging of Explosive Substances

Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4

Received 4 January 2013; Accepted 28 January 2013

Academic Editors: X. Chen, A. K. Dharmadhikari, and S. R. Restaino

Copyright © 2013 Michael A. Startsev and Abdulhakem Y. Elezzabi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Scarfì, M. Romanò, R. Di Pietro et al., “THz exposure of whole blood for the study of biological effects on human lymphocytes,” Journal of Biological Physics, vol. 29, no. 2-3, pp. 171–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?” Proceedings of the IEEE, vol. 93, no. 10, pp. 1722–1743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Inguscio, G. Moruzzi, K. M. Evenson, and D. A. Jennings, “A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz,” Journal of Applied Physics, vol. 60, no. 12, pp. R161–R191, 1986. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Transactions on Electron Devices, vol. 57, no. 6, pp. 1481–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Applied Physics Letters, vol. 66, no. 3, pp. 285–287, 1995. View at Google Scholar · View at Scopus
  6. S. Barbieri, J. Alton, S. S. Dhillon et al., “Continuous-wave operation of terahertz quantum-cascade lasers,” IEEE Journal of Quantum Electronics, vol. 39, no. 4, pp. 586–591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. E. Golay, “Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector,” Review of Scientific Instruments, vol. 18, no. 5, pp. 347–356, 1947. View at Publisher · View at Google Scholar · View at Scopus
  8. P. L. Richards, “Bolometers for infrared and millimeter waves,” Journal of Applied Physics, vol. 76, no. 1, pp. 1–24, 1994. View at Publisher · View at Google Scholar
  9. D. Mittleman, Sensing with Terahertz Radiation, pp. 40–43, Springer, GmbH & Co. KG, Berlin, Germany, 2010.
  10. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1514–1527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. Tribe, A. D. Newnham, F. P. Taday, and C. M. Kemp, “Hidden object detection: security applications of terahertz technology,” Proceedings of the Society of Photo Optical Instrumentation Engineers, vol. 5354, pp. 168–176, 2004. View at Google Scholar
  12. J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 4, pp. 653–661, 2000. View at Google Scholar · View at Scopus
  13. J. F. Federici, B. Schulkin, F. Huang et al., “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semiconductor Science and Technology, vol. 20, no. 7, pp. S266–S280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Optics Express, vol. 14, no. 1, pp. 415–423, 2006. View at Publisher · View at Google Scholar · View at Scopus