Table of Contents Author Guidelines Submit a Manuscript
ISRN Materials Science
Volume 2013 (2013), Article ID 428624, 12 pages
Research Article

Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

Smart Materials Research Laboratory, Department of Mechanical Engineering, Mississippi State University, MS 39762, USA

Received 22 January 2013; Accepted 17 February 2013

Academic Editors: L. Chang and V. Sglavo

Copyright © 2013 Darryl V. Murray and Oliver J. Myers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will cause them to snap through to another shape. This bistability arises from the fabrication process of the thin unsymmetric laminates. The snap through force studied here will be controlled by using piezoelectricity. Macrofiber composite (MFC) actuators are used for piezoelectric actuation. In this research, an analytical modeling method is presented to accurately depict the piezoelectric morphing structures. Sequential numerical modeling of the cure process to account for residual stresses and postcured shapes and piezoelectric morphing structure is done to predict the piezoelectric actuated displacements of the thin unsymmetric composite laminates. Analytical and numerical models are compared to experimental methods and results.