Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 450948, 10 pages
http://dx.doi.org/10.5402/2013/450948
Research Article

Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry

1Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India
2Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5

Received 24 June 2012; Accepted 9 August 2012

Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant

Copyright © 2013 Thiyagarajan Sathishkumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake flask methods provide low yield of flavonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the flavonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. The shake flask method of flavonoid extraction was observed to provide a yield of  (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of flavonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue). The optimal conditions of the extraction of flavonoid were found to be 85°C, 3 hours with a material ratio of 1 : 20, 75% ethanol, and 1 cycle of extraction. About seven different phenolics like robinin, quercetin, rutin, sinapoyl-hexoside, dicaffeic acid, and two unknown compounds were identified for the first time in the flowers of T. heyneana. The study has also concluded that L16 orthogonal design of experiment is an effective method for the extraction of flavonoid than the shake flask method.