Table of Contents
ISRN Electronics
Volume 2013, Article ID 472190, 19 pages
http://dx.doi.org/10.1155/2013/472190
Research Article

Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through Two- and Three-Hop Repeater Systems

School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou, 15780 Athens, Greece

Received 30 November 2012; Accepted 8 January 2013

Academic Editors: J. Abu Qahouq and G. Maruccio

Copyright © 2013 Athanasios G. Lazaropoulos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Lazaropoulos, “Review and progress towards the common broadband management of high-voltage transmission grids: model expansion and comparative modal analysis,” ISRN Electronics, vol. 2012, Article ID 935286, 18 pages, 2012. View at Publisher · View at Google Scholar
  2. G. T. Heydt, C. C. Liu, A. G. Phadke, and V. Vittal, “Solutions for the crisis in electric power supply,” IEEE Computer Applications in Power, vol. 14, no. 3, pp. 22–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. G. Lazaropoulos, “Towards modal integration of overhead and underground low-voltage and medium-voltage power line communication channels in the smart grid landscape: model expansion, broadband signal transmission characteristics, and statistical performance metrics (Invited Paper),” ISRN Signal Processing, vol. 2012, Article ID 121628, 17 pages, 2012. View at Publisher · View at Google Scholar
  4. R. Schneiderman, “Smart grid represents a potentially huge market for the electronics industry,” IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: the role of power line communications in the smart grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 998–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. O. Hasna and M. S. Alouini, “Outage probability of multihop transmission over Nakagami fading channels,” IEEE Communications Letters, vol. 7, no. 5, pp. 216–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless relaying channels,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1820–1830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Wagner and A. Wittneben, “On capacity scaling of multi-antenna multi-hop networks: the significance of the relaying strategy in the ‘long network limit’,” IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2127–2143, 2012. View at Google Scholar
  9. Y. H. Kim, S. Choi, S. C. Kim, and J. H. Lee, “Capacity of OFDM two-hop relaying systems for medium-voltage power-line access networks,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 886–894, 2012. View at Google Scholar
  10. X. Cheng, R. Cao, and L. Yang, “On the system capacity of relay-aided Powerline Communications,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 170–175, Udine, Italy, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Lampe, R. Schober, and S. Yiu, “Distributed space-time coding for multihop transmission in power line communication networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1389–1400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. B. Balakirsky and A. J. Han Vinck, “Potential performance of PLC systems composed of several communication links,” in Proceedings of the 9th International Symposium on Power Line Communications and Its Applications (ISPLC '05), pp. 12–16, Vancouver, BC, Canada, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. G. Lazaropoulos, “Deployment concepts for overhead high voltage broadband over power lines connections with two-hop repeater system: capacity countermeasures against aggravated topologies and high noise environments,” Progress in Electromagnetics Research B, vol. 44, pp. 283–307, 2012. View at Google Scholar
  14. G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communication networks for large-scale control and automation systems,” IEEE Communications Magazine, vol. 48, no. 4, pp. 106–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Lampe and A. J. Han Vinck, “Cooperative multihop power line communications,” in Proceedings of the 16th IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '16), pp. 1–6, Beijing, China, March 2012.
  16. A. G. Lazaropoulos, “Factors influencing broadband transmission characteristics of underground low-voltage distribution networks,” IET Communications, vol. 6, no. 17, pp. 2886–2893, 2012. View at Google Scholar
  17. A. G. Lazaropoulos and P. G. Cottis, “Transmission characteristics of overhead medium-voltage power-line communication channels,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1164–1173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 723–733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—part I: transmission characteristics,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2414–2424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—part II: capacity,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2425–2434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. G. Lazaropoulos, “Towards broadband over power lines systems integration: transmission characteristics of underground low-voltage distribution power lines,” Progress in Electromagnetics Research B, vol. 39, pp. 89–114, 2012. View at Google Scholar
  22. A. G. Lazaropoulos, “Broadband transmission characteristics of overhead high-voltage power line communication channels,” Progress in Electromagnetics Research B, vol. 36, pp. 373–398, 2012. View at Google Scholar
  23. A. G. Lazaropoulos, “Broadband transmission and statistical performance properties of overhead high-voltage transmission networks,” Journal of Computer Networks and Communications, vol. 2012, Article ID 875632, 16 pages, 2012. View at Publisher · View at Google Scholar
  24. OPERA1, “D44: report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed,” IST Integrated Project 507667, 2005. View at Google Scholar
  25. P. Amirshahi and M. Kavehrad, “High-frequency characteristics of overhead multiconductor power lines for broadband communications,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1292–1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Amirshahi, Broadband access and home networking through powerline networks [Ph.D. thesis], The Pennsylvania-State University, University Park, Pa, USA, 2006.
  27. M. D'Amore and M. S. Sarto, “A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines,” IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 303–309, 1997. View at Google Scholar · View at Scopus
  28. OPERA1, “D5: pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks,” IST Integrated Project 507667, 2005. View at Google Scholar
  29. T. Calliacoudas and F. Issa, “Multiconductor transmission lines and cables solver, an efficient simulation tool for PL channel networks development,” in Proceedings of the IEEE International Conference on Power Line Communications and Its Applications (ISPLC '02), Athens, Greece, March 2002.
  30. F. Issa, D. Chaffanjon, E. P. de la Bâthie, and A. Pacaud, “An efficient tool for modal analysis transmission lines for PLC networks development,” in Proceedings of the IEEE International Conferences on Power Line Communications and Its Applications, Athens, Greece, March 2002.
  31. J. Anatory and N. Theethayi, “On the efficacy of using ground return in the broadband power-line communications—a transmission-line analysis,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 132–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. C. J. M. van der Wielen, On-line detection and location of partial discharges in medium-voltage power cables [Ph.D. thesis], Eindhoven University of Technology, Eindhoven, The Netherlands, 2005.
  33. P. C. J. M. van der Wielen, E. F. Steennis, and P. A. A. F. Wouters, “Fundamental aspects of excitation and propagation of on-line partial discharge signals in three-phase medium voltage cable systems,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 4, pp. 678–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Sartenaer, Multiuser communications over frequency selective wired channels and applications to the powerline access network [Ph.D. thesis], Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2004.
  35. T. Sartenaer and P. Delogne, “Powerline cables modelling for broadband communications,” in Proceedings of the IEEE International Conference on Power Line Communications and its Applications (ISPLC '01), pp. 331–337, Malmö, Sweden, April 2001.
  36. M. Tang and M. Zhai, “Research of transmission parameters of four-conductor cables for power line communication,” in Proceedings of the International Conference on Computer Science and Software Engineering, vol. 5, pp. 1306–1309, Wuhan, China, December 2008.
  37. N. Theethayi, Electromagnetic interference in distributed outdoor electrical systems, with an emphasis on lightning interaction with electrified railway network [Ph.D. thesis], Uppsala University, Uppsala, Sweden, 2005.
  38. S. Galli, A. Scaglione, and K. Dostert, “Broadband is power: internet access through the power line network,” IEEE Communications Magazine, vol. 41, no. 5, pp. 82–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Banwell and S. Galli, “A novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model,” IEEE Transactions on Power Delivery, vol. 20, no. 2 I, pp. 655–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Sartenaer and P. Delogne, “Deterministic modeling of the (shielded) outdoor power line channel based on the Multiconductor Transmission Line equations,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1277–1290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The influence of load impedance, line length, and branches on underground cable power-line communications (PLC) systems,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 180–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Anatory, N. Theethayi, and R. Thottappillil, “Power-line communication channel model for interconnected networks—part II: multiconductor system,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 124–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Anatory, N. Theethayi, R. Thottappillil, M. Kissaka, and N. Mvungi, “The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: transmission-line analyses,” IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 621–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Galli and T. Banwell, “A novel approach to the modeling of the indoor power line channel—part II: transfer function and its properties,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1869–1878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Meng, S. Chen, Y. L. Guan et al., “Modeling of transfer characteristics for the broadband power line communication channel,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1057–1064, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Galli and T. C. Banwell, “A deterministic frequency-domain model for the indoor power line transfer function,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1304–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Cataliotti, A. Daidone, and G. Tinè, “Power line communication in medium voltage systems: characterization of MV cables,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1896–1902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. Tonello, F. Versolatto, B. Béjar, and S. Zazo, “A fitting algorithm for random modeling the PLC channel,” IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1477–1484, 2012. View at Google Scholar
  49. J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The effects of load impedance, line length, and branches in the BPLC-transmission-line analysis for indoor voltage channel,” IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2150–2155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Kuhn, S. Berger, I. Hammerström, and A. Wittneben, “Power line enhanced cooperative wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1401–1410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Liu and L. J. Greenstein, “Emission characteristics and interference constraint of overhead medium-voltage Broadband Power Line (BPL) systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '08), pp. 2921–2925, New Orleans, La, USA, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Aquilué, Power line communications for the electrical utility: physical layer design and channel modeling [Ph.D. thesis], Universitat Ramon Llull, Enginyeria I Arquitectura La Salle, Barcelona, Spain, 2008.
  53. J. Song, C. Pan, Q. Wu et al., “Field trial of digital video transmission over medium-voltage powerline with time-domain synchronous orthogonal frequency division multiplexing technology,” in Proceedings of the International Symposium on Power Line Communications and Its Applications (ISPLC '07), pp. 559–564, Pisa, Italy, March 2007.
  54. M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Transactions on Electromagnetic Compatibility, vol. 44, no. 1, pp. 249–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1267–1276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. Ofcom, “DS2 PLT Measurements in Crieff Ofcom Technical Report 793, Part 2, May 2005,”.
  57. M. Gebhardt, F. Weinmann, and K. Dostert, “Physical and regulatory constraints for communication over the power supply grid,” IEEE Communications Magazine, vol. 41, no. 5, pp. 84–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. Ofcom, “Amperion PLT Measurements in Crieff,” Ofcom Technical Report, September 2005, http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/.
  59. NATO, “HF Interference, Procedures and Tools (Interférences HF, procédures et outils) Final Report of NATO RTO Information Systems Technology,” RTO Technical Report TR-IST-050, North Atlantic Treaty Organisation, 2007. View at Google Scholar