Table of Contents
ISRN Toxicology
Volume 2013 (2013), Article ID 483832, 7 pages
http://dx.doi.org/10.1155/2013/483832
Research Article

Biomonitoring and Elimination of Perfluorinated Compounds and Polychlorinated Biphenyls through Perspiration: Blood, Urine, and Sweat Study

1Environmental Health Sciences, University of Alberta, 2935-66 Street, Edmonton, AB, Canada T6K 4C1
2Department of Laboratory Medicine, University of Alberta, Edmonton, AB, Canada T6G 2B7
3Environmental Division, A.L.S. Laboratory Group, Edmonton, AB, Canada T6E 5C1

Received 27 May 2013; Accepted 8 July 2013

Academic Editors: K. M. Erikson, M. F. Hughes, and M. A. Sogorb

Copyright © 2013 Stephen J. Genuis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Centers for Disease Control and Department of Health and Human Services, Fourth National Report on Human Exposure to Environmental Chemicals, Centers for Disease Control, Department of Health and Human Services, Atlanta, Georgia, 2009.
  2. S. M. Rappaport, “Implications of the exposome for exposure science,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 1, pp. 5–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Rappaport and M. T. Smith, “Environment and disease risks,” Science, vol. 330, no. 6003, pp. 460–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. Genuis, “The chemical erosion of human health: adverse environmental exposure and in-utero pollution—determinants of congenital disorders and chronic disease,” Journal of Perinatal Medicine, vol. 34, no. 3, pp. 185–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Genuis, “Elimination of persistent toxicants from the human body,” Human and Experimental Toxicology, vol. 30, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Genuis, M. Sears, G. Schwalfenberg, J. Hope, and R. Bernhoft, “Clinical detoxification: elimination of persistent toxicants from the human body,” The Scientific World Journal, vol. 2013, Article ID 238347, 3 pages, 2013. View at Publisher · View at Google Scholar
  7. American Chemical Society, “Chemical Abstracts Service: Registry,” 2013, http://www.cas.org/content/chemical-substances.
  8. American Chemical Society, “Regulated Chemicals—CHEMLIST,” 2013, http://www.cas.org/content/regulated-chemicals.
  9. NHANES—Fourth National Report on Exposure to Environmental Chemical Exposures, 2012, http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf.
  10. Environmental Working Group, “Pollution in People: Cord Blood Contaminants in Minority Newborns,” 2009, http://static.ewg.org/reports/2009/minority_cord_blood/2009-Minority-Cord-Blood-Report.pdf.
  11. M. E. Sears and S. J. Genuis, “Environmental determinants of chronic disease and medical approaches: recognition, avoidance, supportive therapy, and detoxification,” Journal of Environmental and Public Health, vol. 2012, Article ID 356798, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Jandacek and S. J. Genuis, “An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds,” The Scientific World Journal, vol. 2013, Article ID 205621, 10 pages, 2013. View at Publisher · View at Google Scholar
  13. M. E. Sears, K. J. Kerr, and R. I. Bray, “Arsenic, cadmium, lead, and mercury in sweat: a systematic review,” Journal of Environmental and Public Health, vol. 2012, Article ID 184745, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. D. W. Schnare, G. Denk, M. Shields, and S. Brunton, “Evaluation of a detoxification regimen for fat stored xenobiotics,” Medical Hypotheses, vol. 9, no. 3, pp. 265–282, 1982. View at Google Scholar · View at Scopus
  15. A. J. Barnes, M. L. Smith, S. L. Kacinko et al., “Excretion of methamphetamine and amphetamine in human sweat following controlled oral methamphetamine administration,” Clinical Chemistry, vol. 54, no. 1, pp. 172–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. L. Henderson and B. K. Wilson, “Excretion of methadone and metabolites in human sweat,” Research Communications in Chemical Pathology and Pharmacology, vol. 5, no. 1, pp. 1–8, 1973. View at Google Scholar · View at Scopus
  17. G. H. Ross and M. C. Sternquist, “Methamphetamine exposure and chronic illness in police officers: significant improvement with sauna-based detoxification therapy,” Toxicology and Industrial Health, vol. 28, no. 8, pp. 758–768, 2012. View at Google Scholar
  18. C. Schummer, B. M. R. Appenzeller, and R. Wennig, “Quantitative determination of ethyl glucuronide in sweat,” Therapeutic Drug Monitoring, vol. 30, no. 4, pp. 536–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Milone, “Laboratory testing for prescription opioids,” Journal of Medical Toxicology, vol. 8, pp. 408–416, 2012. View at Google Scholar
  20. E. Marchei, E. Papaseit, O. Garcia-Algar et al., “Sweat testing for the detection of atomoxetine from paediatric patients with attention deficit/hyperactivity disorder: application to clinical practice,” Drug Testing and Analysis, vol. 5, no. 3, pp. 191–195, 2013. View at Google Scholar
  21. C. G. Daughton, “Illicit drugs: contaminants in the environment and utility in forensic epidemiology,” Reviews of Environmental Contamination and Toxicology, vol. 210, pp. 59–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Genuis, D. Birkholz, I. Rodushkin, and S. Beesoon, “Blood, urine, and sweat (BUS) study: monitoring and elimination of bioaccumulated toxic elements,” Archives of Environmental Contamination and Toxicology, vol. 61, no. 2, pp. 344–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Genuis, S. Beesoon, D. Birkholz, and R. A. Lobo, “Human excretion of bisphenol A: blood, urine, and sweat (BUS) study,” Journal of Environmental and Public Health, vol. 2012, Article ID 185731, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Genuis, S. Beesoon, R. A. Lobo, and D. Birkholz, “Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study,” Scientific World Journal, vol. 2012, Article ID 615068, 10 pages, 2012. View at Publisher · View at Google Scholar
  25. C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, and J. Seed, “Perfluoroalkyl acids: a review of monitoring and toxicological findings,” Toxicological Sciences, vol. 99, no. 2, pp. 366–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Shankar, J. Xiao, and A. Ducatman, “Perfluorooctanoic acid and cardiovascular disease in US adults,” Archives of Internal Medicine, vol. 172, pp. 1397–1403, 2012. View at Google Scholar
  27. B. J. Apelberg, L. R. Goldman, A. M. Calafat et al., “Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland,” Environmental Science and Technology, vol. 41, no. 11, pp. 3891–3897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Lee and H. Viberg, “A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain,” Neurotoxicology, vol. 37, pp. 190–196, 2013. View at Google Scholar
  29. K. W. Whitworth, L. S. Haug, D. D. Baird et al., “Perfluorinated compounds and subfecundity in pregnant women,” Epidemiology, vol. 23, no. 2, pp. 257–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. E. P. Hines, S. S. White, J. P. Stanko, E. A. Gibbs-Flournoy, C. Lau, and S. E. Fenton, “Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 97–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. A. Uhl, T. James-Todd, and M. L. Bell, “Association of osteoarthritis with perfluorooctanoate and perfluorooctane sulfonate in NHANES, 2003–2008,” Environmental Health Perspectives, vol. 121, pp. 447–452, 2013. View at Google Scholar
  32. E. C. Bonefeld-Jorgensen, M. Long, R. Bossi et al., “Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study,” Environmental Health, vol. 10, no. 1, article 88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Dewitt, M. M. Peden-Adams, J. M. Keller, and D. R. Germolec, “Immunotoxicity of perfluorinated compounds: recent developments,” Toxicologic Pathology, vol. 40, no. 2, pp. 300–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Genuis, D. Birkholz, M. Ralitsch, and N. Thibault, “Human detoxification of perfluorinated compounds,” Public Health, vol. 124, no. 7, pp. 367–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Humblet, P. L. Williams, S. A. Korrick et al., “Dioxin and polychlorinated biphenyl concentrations in mother's serum and the timing of pubertal onset in sons,” Epidemiology, vol. 22, no. 6, pp. 827–835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. M. Rocheleau, S. J. Bertke, J. A. Deddens et al., “Maternal exposure to polychlorinated biphenyls and the secondary sex ratio: an occupational cohort study,” Environmental Health, vol. 10, no. 1, article 20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Goncharov, M. Bloom, M. Pavuk, I. Birman, and D. O. Carpenter, “Blood pressure and hypertension in relation to levels of serum polychlorinated biphenyls in residents of Anniston, Alabama,” Journal of Hypertension, vol. 28, no. 10, pp. 2053–2060, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Gallagher, A. C. MacArthur, T. K. Lee et al., “Plasma levels of polychlorinated biphenyls and risk of cutaneous malignant melanoma: a preliminary study,” International Journal of Cancer, vol. 128, no. 8, pp. 1872–1880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. K. A. Bertrand, D. Spiegelman, J. C. Aster et al., “Plasma organochlorine levels and risk of non-hodgkin lymphoma in a cohort of men,” Epidemiology, vol. 21, no. 2, pp. 172–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Grandjean, E. Budtz-Jørgensen, D. B. Barr, L. L. Needham, P. Weihe, and B. Heinzow, “Elimination half-lives of polychlorinated biphenyl congeners in children,” Environmental Science and Technology, vol. 42, no. 18, pp. 6991–6996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Ritter, M. Scheringer, M. MacLeod, C. Moeckel, K. C. Jones, and K. Hungerbühler, “Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom,” Environmental Health Perspectives, vol. 119, no. 2, pp. 225–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Wimmerova, K. Lancz, J. Tihanyi et al., “Half-lives of serum PCB congener concentrations in environmentally exposed early adolescents,” Chemosphere, vol. 82, pp. 687–691, 2011. View at Google Scholar
  43. C. Chevrier, C. Warembourg, E. Gaudreau et al., “Organochlorine pesticides, polychlorinated biphenyls, seafood consumption, and time-to-pregnancy,” Epidemiology, vol. 24, pp. 251–260, 2013. View at Google Scholar