Table of Contents
ISRN Forestry
Volume 2013 (2013), Article ID 485264, 8 pages
http://dx.doi.org/10.1155/2013/485264
Research Article

Using Multispectral Spaceborne Imagery to Assess Mean Tree Height in a Dryland Plantation

1Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of The Negev, 84990 Sede Boqer Campus, Israel
2Forest Management and GIS Department, Land Development Authority, Forest Department, Jewish National Fund (KKL), Eshtaol, M.P., 99775 Shimshon, Israel
3Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, 50250 Bet Dagan, Israel

Received 11 April 2013; Accepted 9 May 2013

Academic Editors: M. Kanashiro and H. Zeng

Copyright © 2013 Michael Sprintsin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sellier, Y. Brunet, and T. Fourcaud, “A numerical model of tree aerodynamic response to a turbulent airflow,” Forestry, vol. 81, no. 3, pp. 279–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Zagalikis, A. D. Cameron, and D. R. Miller, “The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics,” Canadian Journal of Forest Research, vol. 35, no. 5, pp. 1224–1237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Cloude and K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5, pp. 1551–1565, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. C. H. Hug and A. Wehr, “Detecting and identifying topographic objects in imaging laser altimetry data,” International Archives of Photogrammetry and Remote Sensing, vol. 32, part 3-4W2, pp. 19–26, 1997. View at Google Scholar
  5. K. Kraus and W. Rieger, “Processing of laser scanning data for wooded areas,” in Photogrammetric Week 1999, D. Fritsch and R. Spiller, Eds., pp. 221–231, Wichmann, Heidelberg, Germany, 1999. View at Google Scholar
  6. J. A. B. Rosette, P. R. J. North, and J. C. Suárez, “Vegetation height estimates for a mixed temperate forest using satellite laser altimetry,” International Journal of Remote Sensing, vol. 29, no. 5, pp. 1475–1493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. N. Coward and D. L. Williams, “Landsat and earth systems science: development of terrestrial monitoring,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 7, pp. 887–900, 1997. View at Google Scholar · View at Scopus
  8. M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience, vol. 52, no. 1, pp. 19–30, 2002. View at Google Scholar · View at Scopus
  9. P. A. Zollner and K. J. Crane, “Influence of canopy closure and shrub coverage on travel along coarse woody debris by eastern chipmunks (Tamias striatus),” American Midland Naturalist, vol. 150, no. 1, pp. 151–157, 2003. View at Google Scholar · View at Scopus
  10. F. Berger and F. Rey, “Mountain protection forests against natural hazards and risks: new french developments by integrating forests in risk zoning,” Natural Hazards, vol. 33, no. 3, pp. 395–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. J. Choudhury, N. U. Ahmed, S. B. Idso, R. J. Reginato, and C. S. T. Daughtry, “Relations between evaporation coefficients and vegetation indices studied by model simulations,” Remote Sensing of Environment, vol. 50, no. 1, pp. 1–17, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wang, P. M. Rich, K. P. Price, and W. D. Kettle, “Relations between NDVI and tree productivity in the central Great Plains,” International Journal of Remote Sensing, vol. 25, no. 16, pp. 3127–3138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Jensen, Introductory Digital Processing: A Remote Sensing Perspective, Prentice-Hall, Englewood Cliffs, NJ, USA, 1996.
  14. C. J. Nichol, K. F. Huemmrich, T. A. Black et al., “Remote sensing of photosynthetic-light-use efficiency of boreal forest,” Agricultural and Forest Meteorology, vol. 101, no. 2-3, pp. 131–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. F. Garbulsky, J. Peñuelas, D. Papale, and I. Filella, “Remote estimation of carbon dioxide uptake by a Mediterranean forest,” Global Change Biology, vol. 14, no. 12, pp. 2860–2867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Goerner, M. Reichstein, and S. Rambal, “Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest,” Remote Sensing of Environment, vol. 113, no. 5, pp. 1101–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sprintsin, A. Karnieli, S. Sprintsin, S. Cohen, and P. Berliner, “Relationships between stand density and canopy structure in a dryland forest as estimated by ground-based measurements and multi-spectral spaceborne images,” Journal of Arid Environments, vol. 73, no. 10, pp. 955–962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. W. Koch, S. C. Stillet, G. M. Jennings, and S. D. Davis, “The limits to tree height,” Nature, vol. 428, no. 6985, pp. 851–854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Liphschitz, O. Bonneh, and Z. Mendel, “Living stumps—circumstantial evidence for root grafting in Pinus halepensis and P. brutia plantations in Israel,” Israel Journal of Botany, vol. 36, pp. 41–43, 1987. View at Google Scholar
  20. H. Hasenauer and R. A. Monserud, “A crown ratio model for Austrian Forests,” Forest Ecology and Management, vol. 84, no. 1–3, pp. 49–60, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Condés and H. Sterba, “Derivation of compatible crown width equations for some important tree species of Spain,” Forest Ecology and Management, vol. 217, no. 2-3, pp. 203–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. L. E. Krajicek, K. A. Brinkman, and S. F. Gingrich, “Crown competition—a measure of density,” Forest Science, vol. 7, pp. 35–42, 1961. View at Google Scholar
  23. T. E. Avery and H. E. Burkhart, Forest Measurements, McGraw-Hill, New York, NY, USA, 1994.
  24. D. M. Hyink and S. M. Zedaker, “Stand dynamics and the evaluation of forest decline,” Tree Physiology, vol. 3, pp. 17–26, 1987. View at Google Scholar
  25. C. Deleuze, J. Herve, F. Colin, and L. Ribeyrolles, “Modelling crown shape of Picea abies: spacing effects,” Canadian Journal of Forest Research, vol. 26, no. 11, pp. 1957–1966, 1996. View at Google Scholar · View at Scopus
  26. A. Mäkelä and P. Vanninen, “Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine,” Canadian Journal of Forest Research, vol. 28, no. 2, pp. 216–227, 1998. View at Google Scholar · View at Scopus
  27. H. Ishii, J. P. Clement, and D. C. Shaw, “Branch growth and crown form in old coastal Douglas-fir,” Forest Ecology and Management, vol. 131, no. 1–3, pp. 81–91, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Ducey, “Predicting crown size and shape from simple stand variables,” Journal of Sustainable Forestry, vol. 28, no. 1-2, pp. 5–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. K. Hall, “DTM project scheme of 1:50,000 topographic sheet mnemonics for Israel,” Geological Survey of Israel Current Research, vol. 8, pp. 47–50, 1993. View at Google Scholar
  30. M. Sprintsin, A. Karnieli, P. Berliner, E. Rotenberg, D. Yakir, and S. Cohen, “The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone,” Remote Sensing of Environment, vol. 109, no. 4, pp. 416–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Grünzweig, T. Lin, E. Rotenberg, A. Schwartz, and D. Yakir, “Carbon sequestration in arid-land forest,” Global Change Biology, vol. 9, no. 5, pp. 791–799, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. N. J. Crookstone and A. R. Stage, Percent Canopy Cover and Stand Structure Statistics from the Forest Vegetation Simulator, USDA Publication, 1999.
  33. Y. Tominaga, “Representative subset selection using genetic algorithms,” Chemometrics and Intelligent Laboratory Systems, vol. 43, no. 1-2, pp. 157–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Gusnanto, Y. Pawitan, J. Huang, and B. Lane, “Variable selection in random calibration of near-infrared instruments: ridge regression and partial least squares regression settings,” Journal of Chemometrics, vol. 17, no. 3, pp. 174–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. L. D. Schroeder, D. L. Sjoquist, and P. E. Stephan, Understanding Regression Analysis, Sage Publications, Beverly Hills, Calif, USA, 1986.
  36. R. J. Freund, R. C. Littell, and L. Creighton, Regression Using JMP, SAS Institute, Cary, NC, USA, 2003.
  37. D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, New York, NY, USA, 1980.
  38. R. D. Snee, “Some aspects of nonorthogonal data analysis—part I: developing prediction equations,” Journal of Quality Technology, vol. 5, no. 2, pp. 67–79, 1973. View at Google Scholar · View at Scopus
  39. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Brutsaert, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1982.
  41. H. G. Jones, Plant and Microclimate, Cambridge University Press, Cambridge, UK, 2nd edition, 1992.
  42. J. Pisek and J. M. Chen, “Mapping forest background reflectivit over North America with Multi-angle Imaging SpectroRadiometer (MISR) data,” Remote Sensing of Environment, vol. 113, no. 11, pp. 2412–2423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Kalliovirta and T. Tokola, “Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information,” Silva Fennica, vol. 39, no. 2, pp. 227–248, 2005. View at Google Scholar · View at Scopus