Table of Contents
ISRN Condensed Matter Physics
Volume 2013, Article ID 497073, 43 pages
http://dx.doi.org/10.1155/2013/497073
Review Article

Hexagonal Manganites—(RMnO3): Class (I) Multiferroics with Strong Coupling of Magnetism and Ferroelectricity

Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204-5002, USA

Received 15 October 2012; Accepted 2 November 2012

Academic Editors: I. Galanakis, M. Higuchi, and V. Kochereshko

Copyright © 2013 Bernd Lorenz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Röntgen, “Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft,” Annalen Der Physik, vol. 271, pp. 264–270, 1888. View at Publisher · View at Google Scholar
  2. H. A. Wilson, “On the electric effect of rotating a dielectric in a magnetic field,” Philosophical Transactions of the Royal Society A, vol. 204, pp. 121–137, 1905. View at Publisher · View at Google Scholar
  3. P. Curie, “Sur la symétrie dans les phénomènes physiques. Symétrie d’un champ électrique d’un champ magnétique,” Journal de Physique, vol. 3, pp. 393–416, 1894. View at Google Scholar
  4. I. E. Dzyaloshinskii, “On the magneto-electrical effect in antiferromagnets,” Soviet Physics, vol. 10, pp. 628–629, 1960, Zhurnal Eksperimental'Noi I Teoreticheskoi Fiziki, vol. 37, no. 3, pp. 881–882, 1959. View at Google Scholar
  5. D. N. Astrov, “The magnetoelectric effect in antiferromagnetics,” Soviet Physics, vol. 11, pp. 708–709, 1960, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 38, pp. 984–985, 1960. View at Google Scholar
  6. V. J. Folen, G. T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3,” Physical Review Letters, vol. 6, no. 11, pp. 607–608, 1961. View at Publisher · View at Google Scholar · View at Scopus
  7. D. N. Astrov, “Magnetoelectric effect in chromium oxide,” Soviet Physics, vol. 13, pp. 729–733, 1961, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 40, pp. 1035, 1961. View at Google Scholar
  8. G. T. Rado and V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains,” Physical Review Letters, vol. 7, no. 8, pp. 310–311, 1961. View at Publisher · View at Google Scholar · View at Scopus
  9. G. T. Rado, “Mechanism of the magnetoelectric effect in an antiferromagnet,” Physical Review Letters, vol. 6, pp. 609–610, 1961. View at Publisher · View at Google Scholar
  10. R. M. Hornreich, “Magnetoelectric effect: materials, physical aspects, and applications,” IEEE Transactions on Magnetics, vol. 8, no. 3, pp. 584–589, 1972. View at Google Scholar · View at Scopus
  11. H. Schmid, “Magnetoelectric effects in insulating magnetic materials,” in Introduction to Complex Mediums for Optics and Electromagnetics, W. S. Weiglhofer and A. Lakhtakia, Eds., vol. 123, p. 167, SPIE Press Monograph, Bellingham, Wash, USA, 2003. View at Google Scholar
  12. T. H. O'Dell, “The field invariants in a magneto-electric medium,” Philosophical Magazine, vol. 8, pp. 411–418, 1963. View at Publisher · View at Google Scholar
  13. W. F. Brown, R. M. Hornreich, and S. Shtrikman, “Upper bound on the magnetoelectric susceptibility,” Physical Review, vol. 168, no. 2, pp. 574–577, 1968. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Ascher and A. G. M. Janner, “Upper bounds on the magneto-electric susceptibility,” Physics Letters A, vol. 29, no. 6, p. 295, 1969. View at Google Scholar · View at Scopus
  15. G. T. Rado, J. M. Ferrari, and W. G. Maisch, “Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4,” Physical Review B, vol. 29, no. 7, pp. 4041–4048, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Rivera, “A short review of the magnetoelectric effect and relatedexperimental techniques on single phase (multi-) ferroics,” European Physical Journal B, vol. 71, pp. 299–313, 2009. View at Publisher · View at Google Scholar
  17. H. G. Kahle, S. Bluck, and A. Kasten, “Simultaneous measurement of magnetic and magneto-electric susceptibility in TbPO4,” Journal of Magnetism and Magnetic Materials, vol. 54-57, no. 3, pp. 1327–1328, 1986. View at Google Scholar · View at Scopus
  18. H. Schmid, “Some symmetry aspects of ferroics and single phase multiferroics,” Journal of Physics, vol. 20, Article ID 434201, 2008. View at Publisher · View at Google Scholar
  19. E. Ascher, “Higher-order magneto-electric effects,” Philosophical Magazine, vol. 17, no. 145, pp. 149–157, 1968. View at Publisher · View at Google Scholar
  20. J.-P. Rivera, “On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite,” Ferroelectrics, vol. 161, no. 1, pp. 165–180, 1994. View at Publisher · View at Google Scholar
  21. S. L. Hou and N. Bloembergen, “Paramagnetoelectric effects in NiSO4 6H2O,” Physical Review, vol. 138, no. 4 A, pp. A1218–A1226, 1965. View at Publisher · View at Google Scholar · View at Scopus
  22. T. H. O'Dell, “An induced magneto-electric effect in yttrium iron garnet,” Philosophical Magazine, vol. 16, no. 141, pp. 487–494, 1967. View at Publisher · View at Google Scholar
  23. J.-P. Rivera and H. Schmid, “Linear and quadratic magnetoelectric (ME) effect in Ni-Cl boracite,” Journal of Applied Physics, vol. 70, no. 10, pp. 6410–6412, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. K.-C. Liang, W. Zhang, B. Lorenz, Y. Y. Sun, P. S. Halasyamani, and C. W. Chu, “Weak ferromagnetism and internal magnetoelectric effect in LiFeP2O7,” Physical Review B, vol. 86, Article ID 094414, 2012. View at Publisher · View at Google Scholar
  25. A. M. Kadomtseva, Y. F. Popov, G. P. Vorob'ev et al., “Magnetoelectric and magnetoelastic properties of rare-earth ferroborates,” Low Temperature Physics, vol. 36, no. 6, Article ID 004006LTP, pp. 511–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. F. Popov, A. P. Pyatakov, A. M. Kadomtseva et al., “Peculiarities in the magnetic, magnetoelectric, and magnetoelastic properties of SmFe3(BO3)4 multiferroic,” Journal of Experimental and Theoretical Physics, vol. 111, no. 2, pp. 199–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Zvezdin, G. P. Vorob'ev, A. M. Kadomtseva et al., “Magnetoelectric and magnetoelastic interactions in NdFe3(BO3)4 multiferroics,” JETP Letters, vol. 83, no. 11, pp. 509–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. K. C. Liang, R. P. Chaudhury, B. Lorenz et al., “Giant magnetoelectric effect in HoAl3(BO3)4,” Physical Review B, vol. 83, no. 18, Article ID 180417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, “Magnetoelectricity and magnetostriction due to the rare-earth moment in TmAl3(BO3)4,” Physical Review B, vol. 81, Article ID 220402, 4 pages, 2010. View at Publisher · View at Google Scholar
  30. N. A. Hill, “Why are there so few magnetic ferroelectrics?” Journal of Physical Chemistry B, vol. 104, pp. 6694–6709, 2000. View at Publisher · View at Google Scholar
  31. E. Ascher, H. Rieder, H. Schmid, and H. Stössel, “Some properties of ferromagnetoelectric Nickel-Iodine boracite, Ni3B7O13I,” Journal of Applied Physics, vol. 37, p. 1404, 1966. View at Publisher · View at Google Scholar
  32. G. A. Smolenskii, V. A. Isupov, N. N. Krainik, and A. L. Agranovskaya, “Concerning the coexistence of the ferroelectric and ferrimagnetic states,” Izvestiya Rossijskoj Akademii Nauk. Seriya Fizika Atmosfery i Okeana, vol. 25, p. 1333, 1961. View at Google Scholar
  33. V. A. Bokov, I. E. Myl'nikova, and G. A. Smolenskii, “Ferroelectrics and an- tiferromagnetics,” Zhurnal Eksperimental'Noi I Teoreticheskoi Fiziki, vol. 42, p. 643, 1962. View at Google Scholar
  34. G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets,” Soviet Physics Uspekhi, vol. 25, p. 475, 1982. View at Publisher · View at Google Scholar
  35. H. Schmid, “Multi-ferroic magnetoelectrics,” Ferroelectrics, vol. 162, p. 317, 1994. View at Publisher · View at Google Scholar
  36. M. Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 38, no. 8, article R123, 2005. View at Publisher · View at Google Scholar
  37. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature, vol. 426, no. 6962, pp. 55–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Bertaut, F. Forrat, and P. Fang, “Les manganites de terres Fares et d'yurtum: une nouvelle classe de ferrotleciriques,” Comptes Rendus de l'Académie des Sciences, vol. 256, p. 1958, 1963. View at Google Scholar
  39. H. L. Yakel, W. C. Koehler, E. F. Bertaut, and E. F. Forrat, “On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium,” Acta Crystallographica, vol. 16, pp. 957–962, 1963. View at Publisher · View at Google Scholar
  40. M. Fiebig, T. Lottermoser, M. K. Kneip, and M. Bayer, “Correlations between magnetic and electrical orderings in multiferroic manganites,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08E302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Yen, C. de la Cruz, B. Lorenz et al., “Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho),” Journal of Materials Research, vol. 22, no. 8, pp. 2163–2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. G. A. Smolenskii and V. A. Bokov, “Coexistence of magnetic and electric ordering in crystals,” Journal of Applied Physics, vol. 35, no. 3, pp. 915–918, 1964. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, “Coupling between the ferroelectric and antiferromagnetic orders in YMnO3,” Physical Review B, vol. 56, no. 5, pp. 2623–2626, 1997. View at Google Scholar · View at Scopus
  44. G. Lawes, A. B. Harris, T. Kimura et al., “Magnetically driven ferroelectric order in Ni3V2O8,” Physical Review Letters, vol. 95, no. 8, Article ID 087205, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. H. Arkenbout, T. T. M. Palstra, T. Siegrist, and T. Kimura, “Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4,” Physical Review B, vol. 74, Article ID 184431, 7 pages, 2006. View at Publisher · View at Google Scholar
  46. K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, “Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field,” Physical Review Letters, vol. 97, Article ID 097203, 4 pages, 2006. View at Publisher · View at Google Scholar
  47. O. Heyer, N. Hollmann, I. Klassen et al., “A new multiferroic material: MnWO4,” Journal of Physics, vol. 18, no. 39, article no. L01, pp. L471–L475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Park, Y. J. Vhoi, C. L. Zhang, and S.-W. Cheong, “Ferroelectricity in an S = 1/2 Chain Cuprate,” Physical Review Letters, vol. 98, no. 5, Article ID 057601, 2007. View at Publisher · View at Google Scholar
  49. T. Kimura, J. C. Lashley, and A. P. Ramirez, “Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2,” Physical Review B, vol. 73, Article ID 220401, 4 pages, 2006. View at Publisher · View at Google Scholar
  50. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Physical Review Letters, vol. 96, no. 20, Article ID 207204, 2006. View at Publisher · View at Google Scholar
  51. S. W. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity,” Nature Materials, vol. 6, no. 1, pp. 13–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, “Ferroelectricity in an ising chain magnet,” Physical Review Letters, vol. 100, Article ID 047601, 4 pages, 2008. View at Publisher · View at Google Scholar
  53. A. Inomata and K. Kohn, “Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5,” Journal of Physics, vol. 8, no. 15, p. 2673, 1996. View at Publisher · View at Google Scholar
  54. N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, “Colossal magnetodielectric effects in DyMn2O5,” Physical Review Letters, vol. 93, no. 10, pp. 1–107207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Lorenz, Y. Q. Wang, and C. W. Chu, “Ferroelectricity in perovskite HoMnO3 and YMnO3,” Physical Review B, vol. 76, Article ID 104405, 5 pages, 2007. View at Publisher · View at Google Scholar
  56. Y. S. Chai, Y. S. Oh, L. J. Wang et al., “Intrinsic ferroelectric polarization of orthorhombic manganites with E-type spin order,” Physical Review B, vol. 85, Article ID 184406, 6 pages, 2012. View at Publisher · View at Google Scholar
  57. D. Higashiyama, S. Miyasaka, N. Kida, T. Arima, and Y. Tokura, “Control of the ferroelectric properties of DyMn2O5 by magnetic fields,” Physical Review B, vol. 70, no. 17, Article ID 174405, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature, vol. 429, no. 6990, pp. 392–395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota, and Y. Tokura, “Correlation between spin helicity and an electric polarization vector in quantum-spin chain magnet LiCu2O2,” Physical Review Letters, vol. 100, Article ID 127201, 4 pages, 2008. View at Publisher · View at Google Scholar
  60. H. Sagayama, K. Taniguchi, N. Abe et al., “Correlation between ferroelectric polarization and sense of helical spin order in multiferroic MnWO4,” Physical Review B, vol. 77, no. 22, Article ID 220407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. C. R. Dela Cruz, B. Lorenz, Y. Y. Sun et al., “Pressure-induced enhancement of ferroelectricity in multiferroic RMn2O5 (R=Tb,Dy,Ho),” Physical Review B, vol. 76, no. 17, Article ID 174106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. R. P. Chaudhury, C. R. Dela Cruz, B. Lorenz et al., “Pressure-induced polarization reversal in multiferroic YMn2O5,” Physical Review B, vol. 77, no. 22, Article ID 220104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. C. R. dela Cruz, B. Lorenz, and C. W. Chu, “Tuning ferroelectricity in DyMn2O5 by pressure and magnetic fields,” Physica B, vol. 403, no. 5-9, pp. 1331–1335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. R. P. Chaudhury, F. Yen, C. R. dela Cruz et al., “Pressure-temperature phase diagram of multiferroic Ni3V2O8,” Physical Review B, vol. 75, Article ID 012407, 4 pages, 2007. View at Publisher · View at Google Scholar
  65. S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, and Y. Tokura, “Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2,” Physical Review B, vol. 75, no. 10, Article ID 100403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Kanetsuki, S. Mitsuda, T. Nakajima, D. Anazawa, H. A. Katori, and K. Prokes, “Field-induced ferroelectric state in frustrated magnet CuFe 1−xAlxO2,” Journal of Physics, vol. 19, no. 14, Article ID 145244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. R. P. Chaudhury, B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, “Suppression and recovery of the ferroelectric phase in multiferroic MnWO4,” Physical Review B, vol. 77, Article ID 104406, 6 pages, 2008. View at Publisher · View at Google Scholar
  68. R. P. Chaudhury, F. Ye, J. A. Fernandez-Baca et al., “Robust ferroelectric state in multiferroic Mn1−xZnxWO4,” Physical Review B, vol. 83, Article ID 014401, 6 pages, 2011. View at Publisher · View at Google Scholar
  69. K. C. Liang, Y. Q. Wang, Y. Y. Sun et al., “The complex multiferroic phase diagram of Mn1−xCoxWO4,” New Journal of Physics, vol. 14, no. 14, Article ID 073028, 2012. View at Publisher · View at Google Scholar
  70. W. Prellier, M. P. Singh, and P. Murugavel, “The single-phase multiferroic oxides: from bulk to thin film,” Journal of Physics, vol. 17, no. 30, pp. R803–R832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Tokura, “Multiferroics-toward strong coupling between magnetization and polarization in a solid,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, part 2, pp. 1145–1150, 2007. View at Publisher · View at Google Scholar
  73. C. N. R. Rao and C. R. Serrano, “New routes to multiferroics,” Journal of Materials Chemistry, vol. 17, pp. 4931–4938, 2007. View at Publisher · View at Google Scholar
  74. G. Lawes and G. Srinivasan, “Introduction to magnetoelectric coupling and multiferroic films,” Journal of Physics D, vol. 44, no. 24, Article ID 243001, 2011. View at Publisher · View at Google Scholar
  75. J. van den Brink and D. I. Khomskii, “Multiferroicity due to charge ordering,” Journal of Physics, vol. 20, no. 43, Article ID 434217, 2008. View at Publisher · View at Google Scholar
  76. P. S. Halasyamani and K. R. Poeppelmeier, “Noncentrosymmetric oxides,” Chemistry of Materials, vol. 10, no. 10, pp. 2753–2769, 1998. View at Google Scholar · View at Scopus
  77. M. Atanasov and D. Reinen, “Density functional studies on the lone pair effect of the trivalent group (V) elements:  I. electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX3 Molecules (A=N to Bi; X=H, and F to I),” The Journal of Physical Chemistry A, vol. 105, no. 22, pp. 5450–5467, 2001. View at Publisher · View at Google Scholar
  78. R. Seshadri and N. A. Hill, “Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in rerromagnetic BiMnO3,” Chemistry of Materials, vol. 13, no. 9, pp. 2892–2899, 2001. View at Publisher · View at Google Scholar
  79. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, “The origin of ferroelectricity in magnetoelectric YMnO3,” Nature Materials, vol. 3, no. 3, pp. 164–170, 2004. View at Google Scholar · View at Scopus
  80. K. Lukaszewicz and J. Karut-Kalicińska, “X-Ray investigations of the crystal structure and phase transitions of YMnO3,” Ferroelectrics, vol. 7, no. 1, pp. 81–82, 1974. View at Publisher · View at Google Scholar
  81. G. Nénert, Y. Ren, H. Stokes, and T. T. M. Palstra, “Symmetry changes at the ferroelectric transition in the multiferroic YMnO3,” http://arxiv.org/abs/cond-mat/0504546.
  82. G. Nénert, M. Pollet, S. Marinel, G. R. Blake, A. Meetsma, and T. T. M. Palstra, “Experimental evidence for an intermediate phase in the multiferroic YMnO3,” Journal of Physics, vol. 19, no. 46, Article ID 466212, 2007. View at Publisher · View at Google Scholar
  83. I.-K. Jeong, N. Hur, and T. Proffen J, “High-temperature structural evolution of hexagonal multiferroic YMnO3 and YbMnO3,” Journal of Applied Crystallography, vol. 40, no. 4, pp. 730–734, 2007. View at Publisher · View at Google Scholar
  84. A. S. Gibbs, K. S. Knight, and P. Lightfoot, “High-temperature phase transitions of hexagonal YMnO3,” Physical Review B, vol. 83, no. 9, Article ID 094111, 2011. View at Publisher · View at Google Scholar
  85. S. C. Abrahams, “Atomic displacements at and order of all phase transitions in multiferroic YMnO3 and BaTiO3,” Acta Crystallographica Section B, vol. 65, no. 4, pp. 450–457, 2009. View at Publisher · View at Google Scholar
  86. T. Lonkai, D. G. Tomuta, U. Amann et al., “Development of the high-temperature phase of hexagonal manganites,” Physical Review B, vol. 69, no. 13, Article ID 134108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. E. F. Bertaut and M. Mercier, “Structure magnetique de MnYO3,” Physics Letters A, vol. 5, no. 1, pp. 27–29, 1964. View at Google Scholar
  88. W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, “A note on the magnetic structures of rare earth manganese oxides,” Physics Letters, vol. 9, no. 2, pp. 93–95, 1964. View at Google Scholar · View at Scopus
  89. J. E. Greedan, M. Bieringer, J. F. Britten, D. M. Giaquinta, and H. C. zur Loye, “Synthesis, crystal structure, and unusual magnetic properties of InMnO3,” Journal of Solid State Chemistry, vol. 116, no. 1, pp. 118–130, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. D. G. Tomuta, S. Ramakrishnan, G. J. Niewenhuys, and J. A. Mydosh, “The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3,” Journal of Physics, vol. 13, no. 20, pp. 4543–4552, 2001. View at Publisher · View at Google Scholar
  91. T. Katsufuji, M. Masaki, A. Machida et al., “Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping,” Physical Review B, vol. 66, no. 13, Article ID 134434, pp. 1344341–1344348, 2002. View at Google Scholar · View at Scopus
  92. N. Kamegashira, H. Satoh, and S. Ashizuka, “Synthesis and crystal structure of hexagonal DYMnO3,” Materials Science Forum, vol. 449-452, no. II, pp. 1045–1048, 2004. View at Google Scholar · View at Scopus
  93. M. Fiebig, T. Lottermoser, and R. V. Pisarev, “Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3,” Journal of Applied Physics, vol. 93, no. 10, pp. 8194–8196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. X. Fabrèges, I. Mirebeau, P. Bonville et al., “Magnetic order in YbMnO3 studied by neutron diffraction and Mössbauer spectroscopy,” Physical Review B, vol. 78, no. 21, Article ID 214422, 2008. View at Publisher · View at Google Scholar
  95. A. Muñoz, J. A. Alonśo, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, “Magnetic structure of hexagonal, RMnO3 (R = Y, Sc): thermal evolution from neutron powder diffraction data,” Physical Review B, vol. 62, no. 14, pp. 9498–9510, 2000. View at Publisher · View at Google Scholar
  96. J. Park, U. Kong, A. Pirogov et al., “Neutron-diffraction studies of YMnO3,” Applied Physics A, vol. 74, no. I, pp. S796–S798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Reif, C. Rau, and E. Matthias, “Influence of magnetism on second harmonic generation,” Physical Review Letters, vol. 71, no. 12, pp. 1931–1934, 1993. View at Publisher · View at Google Scholar · View at Scopus
  98. V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Physical Review Letters, vol. 78, no. 10, pp. 2004–2007, 1997. View at Google Scholar · View at Scopus
  99. D. Fröhlich, St. Leute, V. V. Pavlov, and R. V. Pisarev, “Nonlinear optical spectroscopy of the two-order-parameter compound YMnO3,” Physical Review Letters, vol. 81, no. 15, pp. 3239–3242, 1998. View at Google Scholar
  100. M. Fiebig, D. Fröhlich, K. Kohn et al., “Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation,” Physical Review Letters, vol. 84, no. 24, pp. 5620–5623, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Iizuka-Sakano, E. Hanamura, and Y. Tanabe, “Second-harmonic-generation spectra of the hexagonal manganites RMnO3,” Journal of Physics, vol. 13, no. 13, pp. 3031–3055, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Fiebig, C. Degenhardt, and R. V. Pisarev, “Interaction of frustrated magnetic sublattices in ERMnO3,” Physical Review Letters, vol. 88, no. 2, Article ID 027203, pp. 272031–272034, 2002. View at Publisher · View at Google Scholar
  103. T. Lonkai, D. Hohlwein, J. Ihringer, and W. Prandl, “The magnetic structures of YMnO3-δ and HoMnO3,” Applied Physics A, vol. 74, no. I, pp. S843–S845, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. N. Iwata, “Dielectric anomalies at magnetic transitions of hexagonal rare earth manganese oxides RMnO3,” Journal of the Physical Society of Japan, vol. 67, no. 9, pp. 3318–3319, 1998. View at Google Scholar
  105. H. Sugie, N. Iwata, and K. Kohn, “Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu),” Journal of the Physical Society of Japan, vol. 71, no. 6, pp. 1558–1564, 2002. View at Publisher · View at Google Scholar
  106. A. Muñoz, J. A. Alonso, and M. J. Martínez-Lope, “Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data,” Chemistry of Materials, vol. 13, pp. 1497–1505, 2001. View at Google Scholar
  107. P. J. Brown and T. Chatterji, “Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3,” Journal of Physics, vol. 18, no. 44, pp. 10085–10096, 2006. View at Publisher · View at Google Scholar
  108. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S.-W. Cheong, “Magnetic order and spin dynamics in ferroelectric HoMnO3,” Physical Review Letters, vol. 94, no. 8, Article ID 087601, 2005. View at Publisher · View at Google Scholar
  109. M. Fiebig, C. Degenhardt, and R. V. Pisarev, “Magnetic phase diagram of HoMnO3,” Journal of Applied Physics, vol. 91, no. 10, p. 8867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Fiebig, T. Lottermoser, T. Lonkai, A. V. Goltsev, and R. V. Pisarev, “Magnetoelectric effects in multiferroic manganites,” Journal of Magnetism and Magnetic Materials, vol. 290-291, pp. 883–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Nandi, A. Kreyssig, L. Tan et al., “Nature of Ho magnetism in multiferroic HoMnO3,” Physical Review Letters, vol. 100, no. 21, Article ID 217201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. S. G. Condran and M. L. Plumer, “A model of magnetic order in hexagonal HoMnO3,” Journal of Physics, vol. 22, no. 16, Article ID 162201, 2010. View at Publisher · View at Google Scholar
  113. B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, “Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3,” Physical Review Letters, vol. 92, no. 8, pp. 872041–872044, 2004. View at Google Scholar
  114. F. Yen, C. R. dela Cruz, B. Lorenz et al., “Low-temperature dielectric anomalies in HoMnO3: the complex phase diagram,” Physical Review B, vol. 71, Article ID 180407, 4 pages, 2005. View at Publisher · View at Google Scholar
  115. P. A. Sharma, J. S. Ahn, N. Hur et al., “Thermal conductivity of geometrically frustrated, ferroelectric YMnO3: extraordinary spin-phonon interactions,” Physical Review Letters, vol. 93, no. 17, pp. 1–177202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. H. D. Zhou, J. C. Denyszyn, and J. B. Goodenough, “Effect of Ga doping on the multiferroic properties of RMn1-xGaxO3 (R=Ho,Y),” Physical Review B, vol. 72, no. 22, Article ID 224401, 2005. View at Publisher · View at Google Scholar
  117. H. D. Zhou, J. Lu, R. Vasic et al., “Relief of frustration through spin disorder in multiferroic Ho1-xYxMnO3,” Physical Review B, vol. 75, no. 13, Article ID 132406, 2007. View at Publisher · View at Google Scholar
  118. R. Vasic, H. D. Zhou, E. Jobiliong, C. R. Wiebe, and J. S. Brooks, “Probing multiferroicity and spin-spin interactions via dielectric measurements on Y-doped HoMnO3 in high magnetic fields,” Physical Review B, vol. 75, no. 1, Article ID 014436, 2007. View at Publisher · View at Google Scholar
  119. H. D. Zhou, R. Vasic, J. Lu, J. S. Brooks, and C. R. Wiebe, “The effect of Er doping on the multiferroics of Ho1-xErxMnO3,” Journal of Physics, vol. 20, no. 3, Article ID 035211, 2008. View at Publisher · View at Google Scholar
  120. N. Hur, I. K. Jeong, M. F. Hundley, S. B. Kim, and S. W. Cheong, “Giant magnetoelectric effect in multiferroic HoMnO3 with a high ferroelectric transition temperature,” Physical Review B, vol. 79, Article ID 134120, 2009. View at Publisher · View at Google Scholar
  121. B. Lorenz, F. Yen, M. M. Gospodinov, and C. W. Chu, “Field-induced phases in HoMnO3 at low temperatures,” Physical Review B, vol. 71, Article ID 014438, 9 pages, 2005. View at Publisher · View at Google Scholar
  122. V. Skumryev, M. D. Kuz'Min, M. Gospodinov, and J. Fontcuberta, “Anisotropic paramagnetic response of hexagonal R MnO3,” Physical Review B, vol. 79, no. 21, Article ID 212414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. H. D. Zhou, J. A. Janik, B. W. Vogt et al., “Specific heat of geometrically frustrated and multiferroic RMn1−x Gax O3 (R = Ho,Y),” Physical Review B, vol. 74, no. 9, Article ID 094426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, “Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMnO3 crystals (R=Dy, Tb, Ho, and Yb),” Physical Review B, vol. 84, Article ID 235127, 10 pages, 2011. View at Publisher · View at Google Scholar
  125. P. Liu, X. L. Wang, Z. X. Cheng, Y. Du, and H. Kimura, “Structural, dielectric, antiferromagnetic, and thermal properties of the frustrated hexagonal Ho1−xErxMnO3 manganites,” Physical Review B, vol. 83, Article ID 144404, 8 pages, 2011. View at Publisher · View at Google Scholar
  126. A. Oleaga, A. Salazar, D. Prabhakaran, J. G. Cheng, and J. S. Zhou, “Critical behavior of the paramagnetic to antiferromagnetic transition in orthorhombic and hexagonal phases of RMnO3 (R=Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y),” Physical Review B, vol. 85, Article ID 184425, 8 pages, 2012. View at Publisher · View at Google Scholar
  127. C. R. dela Cruz, F. Yen, B. Lorenz et al., “Strong spin-lattice coupling in multiferroic HoMnO3: thermal expansion anomalies and pressure effect,” Physical Review B, vol. 71, Article ID 060407, 4 pages, 2005. View at Publisher · View at Google Scholar
  128. A. P. Litvinchuk, M. N. Iliev, V. N. Popov, and M. M. Gospodinov, “Raman and infrared-active phonons in hexagonal HoMnO3 single crystals: Magnetic ordering effects,” Journal of Physics, vol. 16, no. 6, pp. 809–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. A. B. Souchkov, J. R. Simpson, M. Quijada et al., “Exchange interaction effects on the optical properties of LuMnO3,” Physical Review Letters, vol. 91, no. 2, pp. 027203/1–027203/4, 2003. View at Google Scholar · View at Scopus
  130. X. Fabréges, S. Petit, I. Mirebeau et al., “Spin-lattice coupling, frustration, and magnetic order in multiferroic RMnO3,” Physical Review Letters, vol. 103, Article ID 067204, 4 pages, 2009. View at Publisher · View at Google Scholar
  131. T. A. Tyson, T. Wu, K. H. Ahn, S. B. Kim, and S. W. Cheong, “Local spin-coupled distortions in multiferroic hexagonal HoMnO3,” Physical Review B, vol. 81, Article ID 054101, 7 pages, 2010. View at Publisher · View at Google Scholar
  132. M. Poirier, J. C. Lemyre, P. O. Lahaie, L. Pinsard-Gaudart, and A. Revcolevschi, “Enhanced magnetoelastic coupling in hexagonal multiferroic HoMnO3,” Physical Review B, vol. 83, no. 5, Article ID 054418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Lottermoser and M. Fiebig, “Magnetoelectric behavior of domain walls in multiferroic HoMnO3,” Physical Review B, vol. 70, no. 22, Article ID 220407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. H. J. Lewtas, T. Lancaster, P. J. Baker, S. J. Blundell, D. Prabhakaran, and F. L. Pratt, “Local magnetism and magnetoelectric effect in HoMnO3 studied with muon-spin relaxation,” Physical Review B, vol. 81, no. 1, Article ID 014402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. C. Lemyre and M. Poirier, “Microwave investigation of the phase diagram of hexagonal multiferroic HoMnO3,” Physical Review B, vol. 79, Article ID 094423, 6 pages, 2009. View at Publisher · View at Google Scholar
  136. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S. W. Cheong, “Neutron-scattering studies of magnetism in multiferroic HoMnO3,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08E301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Lee, A. Pirogov, M. Kang et al., “Giant magneto-elastic coupling in multiferroic hexagonal manganites,” Nature, vol. 451, pp. 805–808, 2008. View at Publisher · View at Google Scholar
  138. T. Chatterji, B. Ouladdiaf, P. F. Henry, and D. Bhattacharya, “Magnetoelastic effects in multiferroic YMnO3,” Journal of Physics: Condensed Matter, vol. 24, Article ID 336003, 2012. View at Google Scholar
  139. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field,” Nature, vol. 430, no. 6999, pp. 541–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. B. G. Ueland, J. W. Lynn, M. Laver, Y. J. Choi, and S. W. Cheong, “Origin of electric-field-induced magnetization in multiferroic HoMnO3,” Physical Review Letters, vol. 104, Article ID 147204, 14 pages, 2010. View at Publisher · View at Google Scholar
  141. C. J. Fennie and K. M. Rabe, “Ferroelectric transition in YMnO3 from first principles,” Physical Review B, vol. 72, Article ID 100103, 2005. View at Google Scholar
  142. M. Stengel, C. J. Fennie, and P. Ghosez, “Electrical properties of improper ferroelectrics from first principles,” Physical Review B, vol. 86, no. 9, Article ID 094112, 9 pages, 2012. View at Google Scholar
  143. D.-Y. Cho, J.-Y. Kim, B.-G. Park et al., “Ferroelectricity driven by y d0-ness with rehybridization in YMnO3,” Physical Review Letters, vol. 98, no. 21, Article ID 217601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, “Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu),” Physical Review B, vol. 64, no. 10, Article ID 104419, pp. 1044191–1044196, 2001. View at Google Scholar · View at Scopus
  145. B. B. V. Aken, J. W. G. Bos, R. A. de Groot, and T. T. M. Palstra, “Quantum 120-degrees model on pyrochlore lattice: orbital ordering in MnV2O4l,” Physical Review B, vol. 63, Article ID 125127, 2001. View at Google Scholar
  146. Y. Aikawa, T. Katsufuji, T. Arima, and K. Kato, “Effect of Mn trimerization on the magnetic and dielectric properties of hexagonal YMnO3,” Physical Review B, vol. 71, Article ID 184418, 2005. View at Google Scholar
  147. T. Lonkai, D. G. Tomuta, J. U. Hoffmann, R. Schneider, D. Hohlwein, and J. Ihringer, “Magnetic two-dimensional short-range order in hexagonal manganites,” Journal of Applied Physics, vol. 93, no. 10, pp. 8191–8193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Park, J. G. Park, G. S. Jeon et al., “Magnetic ordering and spin-liquid state of YMnO3,” Physical Review B, vol. 68, no. 10, Article ID 104426, 6 pages, 2003. View at Google Scholar · View at Scopus
  149. A. Dixit, A. E. Smith, M. A. Subramanian, and G. Lawes, “Suppression of multiferroic order in hexagonal YMn1−x Inx O3 ceramics,” Solid State Communications, vol. 150, no. 15-16, pp. 746–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. A. K. Singh, S. Patnaik, S. D. Kaushik, and V. Siruguri, “Dominance of magnetoelastic coupling in hexagonal multiferroic YMnO3,” Physical Review B, vol. 81, Article ID 184406, 2010. View at Google Scholar
  151. E. F. Bertaut, R. Pauthenet, and M. Mercier, “Sur des proprietes magnetiques du manganite d'yttrium,” Physics Letters, vol. 18, no. 1, p. 13, 1965. View at Google Scholar · View at Scopus
  152. D. P. Kozlenko, S. E. Kichanov, S. Lee, J. G. Park, and B. N. Savenko, “Pressure-induced spin fluctuations and spin reorientation in hexagonal manganites,” Journal of Physics, vol. 19, no. 15, Article ID 156228, 2007. View at Publisher · View at Google Scholar
  153. M. Janoschek, B. Roessli, L. Keller, S. N. Gvasaliya, K. Conder, and E. Pomjakushina, “Reduction of the ordered magnetic moment in YMnO3 with hydrostatic pressure,” Journal of Physics, vol. 17, no. 42, pp. L425–L430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Petit, F. Moussa, M. Hennion, S. Pailhés, L. Pinsard-Gaudart, and A. Ivanov, “Spin phonon coupling in hexagonal multiferroic YMnO3,” Physical Review Letters, vol. 99, no. 26, Article ID 266604, 2007. View at Google Scholar
  155. T. J. Sato, S. H. Lee, T. Katsufuji et al., “Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3,” Physical Review B, vol. 68, no. 1, Article ID 014432, pp. 144321–144325, 2003. View at Google Scholar · View at Scopus
  156. T. Chatterji, S. Ghosh, A. Singh, L. P. Regnault, and M. Rheinstädter, “Spin dynamics of YMnO3 studied via inelastic neutron scattering and the anisotropic Hubbard model,” Physical Review B, vol. 76, Article ID 144406, 2007. View at Publisher · View at Google Scholar
  157. F. Demmel and T. Chatterji, “Persistent spin waves above the Néel temperature in YMnO3,” Physical Review B, vol. 76, Article ID 212402, 4 pages, 2007. View at Publisher · View at Google Scholar
  158. M. Tachibana, J. Yamazaki, H. Kawaij, and T. Atake, “Heat capacity and critical behavior of hexagonal YMnO3,” Physical Review B, vol. 72, Article ID 064434, 5 pages, 2005. View at Publisher · View at Google Scholar
  159. S. Lee, A. Pirogov, J. H. Han, J. G. Park, A. Hoshikawa, and T. Kamiyama, “Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3,” Physical Review B, vol. 71, Article ID 180413, 4 pages, 2005. View at Publisher · View at Google Scholar
  160. M. Poirier, F. Laliberté, L. Pinsard-Gaudart, and A. Revcolevschi, “Magnetoelastic coupling in hexagonal multiferroic YMnO3 using uktrasound measurements,” Physical Review B, vol. 76, Article ID 174426, 2007. View at Publisher · View at Google Scholar
  161. A. Pimenov, A. A. Mukhin, V. Y. Ivanov, V. D. Travkin, A. M. Balbashov, and A. Loidl, “Possible evidence for electromagnons in multiferroic manganites,” Nature Physics, vol. 2, no. 2, pp. 97–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Senff, P. Link, K. Hradil et al., “Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode,” Physical Review Letters, vol. 98, no. 13, Article ID 137206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. H. Fukumura, S. Matsui, H. Harima et al., “Raman scattering studies on multiferroic YMnO3,” Journal of Physics, vol. 19, no. 36, Article ID 365239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Zaghrioui, V. T. Phuoc, R. A. Souza, and M. Gervais, “Polarized reflectivity and lattice dynamics calculation of multiferroic YMnO3,” Physical Review B, vol. 78, Article ID 184305, 2008. View at Publisher · View at Google Scholar
  165. J. Vermette, S. Jandl, A. A. Mukhin et al., “Raman study of the antiferromagnetic phase transitions in hexagonal YMnCO3 and LuMnO3,” Journal of Physics, vol. 22, no. 35, Article ID 356002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Vermette, S. Jandl, and M. M. Gospodinov, “Raman study of spin-phonon coupling in ERMnO3,” Journal of Physics, vol. 20, no. 42, Article ID 425219, 2008. View at Publisher · View at Google Scholar
  167. M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, “Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3,” Physical Review Letters, vol. 73, no. 15, pp. 2127–2130, 1994. View at Publisher · View at Google Scholar
  168. M. Fiebig, D. Fröhlich, G. Sluyterman, and R. V. Pisarev, “Domain topography of antiferromagnetic Cr2O3 by second harmonic generation,” Applied Physics Letters, vol. 66, no. 21, article 2906, 3 pages, 1995. View at Publisher · View at Google Scholar
  169. M. Fiebig, D. Fröhlich, S. Leute, and R. V. Pisarev, “Second harmonic spectroscopy and control of domain size in antiferromagnetic YMnO3,” Journal of Applied Physics, vol. 83, no. 11, pp. 6560–6562, 1998. View at Google Scholar · View at Scopus
  170. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature, vol. 419, no. 6909, pp. 818–820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Fiebig, D. Fröhlich, S. Leute, and R. V. Pisarev, “Topography of antiferromagnetic domains using second harmonic generation with an external reference,” Applied Physics B, vol. 66, no. 3, pp. 265–270, 1998. View at Publisher · View at Google Scholar
  172. S. Leute, T. Lottermoser, and D. Fröhlich, “Nonlinear spatially resolved phase spectroscopy,” Optics Letters, vol. 24, no. 21, pp. 1520–1522, 1999. View at Google Scholar · View at Scopus
  173. E. Hanamura, K. Hagita, and Y. Tanabe, “Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3,” Journal of Physics, vol. 15, no. 3, pp. L103–L109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. A. V. Goltsev, R. V. Pisarev, T. Lottermoser, and M. Fiebig, “Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3,” Physical Review Letters, vol. 90, no. 17, Article ID 177204, 4 pages, 2003. View at Google Scholar · View at Scopus
  175. M. Fiebig, A. V. Goltsev, T. Lottermoser, and R. V. Pisarev, “Structure and interaction of domain walls in YMnO3,” Journal of Magnetism and Magnetic Materials, vol. 272-276, no. I, pp. 353–354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. H. J. Lewtas, A. T. Boothroyd, M. Rotter et al., “Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering,” Physical Review B, vol. 82, no. 18, Article ID 184420, 7 pages, 2010. View at Publisher · View at Google Scholar
  177. K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, “Characterization of RMnO3 (R = Sc, Y, Dy-Lu): High-pressure synthesized metastable perovskites and their hexagonal precursor phases,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1029–1034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. H. W. Xu, J. Iwasaki, T. Shimizu, H. Satoh, and N. Kamegashira, “Structure, magnetic susceptibility and heat capacity of ScMnO3,” Journal of Alloys and Compounds, vol. 221, no. 1-2, pp. 274–279, 1995. View at Google Scholar · View at Scopus
  179. M. Bieringer and J. E. Greedan, “Magnetic structure and spin reorientation transition in ScMnO3,” Journal of Solid State Chemistry, vol. 143, no. 1, pp. 132–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Fiebig, D. Fröhlich, T. Lottermoser, and R. V. Pisarev, “Photoinduced instability of the magnetic structure of hexagonal ScMnO3,” Physical Review B, vol. 65, no. 22, Article ID 224421, 6 pages, 2002. View at Publisher · View at Google Scholar
  181. E. Galstyan, B. Lorenz, K. S. Nartyrosyan et al., “Magnetic hysteretic phenomena in multiferroic HoMnO3 single crystals and polycrystals with nano- and micrometer particle size,” Journal of Physics, vol. 20, no. 32, Article ID 325241, 2008. View at Publisher · View at Google Scholar
  182. B. B. Van Aken and T. T. M. Palstra, “Influence of magnetic on ferroelectric ordering in LuMnO3,” Physical Review B, vol. 69, no. 13, Article ID 134113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. M. Bieringer, J. E. Greedan, and A. S. Wills, “Investigation of magnetic structure evolution in the substitutional solid solution ScxLu1−xMnO3,” Applied Physics A, vol. 74, pp. S601–S603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Fiebig, D. Fröhlich, T. Lottermoser, and K. Kohn, “Spin-angle topography of hexagonal manganites by magnetic second-harmonic generation,” Applied Physics Letters, vol. 77, no. 26, p. 4401, 2000. View at Publisher · View at Google Scholar
  185. M. C. Sekhar, S. Lee, G. Choi, C. Lee, and J. G. Park, “Doping effects of hexagonal manganites Er1−xYxMnO3 with triangular spin structure,” Physical Review B, vol. 72, no. 1, Article ID 014402, 6 pages, 2005. View at Publisher · View at Google Scholar
  186. D. Meier, H. Ryll, K. Kiefer et al., “Mutual induction of magnetic 3d and 4f order in multiferroic hexagonal ERMnO3,” Physical Review B, vol. 86, no. 18, Article ID 184415, 8 pages.
  187. J. Park, U. Kong, S. I. Choi, J. G. Park, C. Lee, and W. Jo, “Magnetic structure studies of ERMnO3,” Applied Physics A, vol. 74, no. I, pp. S802–S804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. E. C. Standard, T. Stanislavchuk, A. A. Sirenko, N. Lee, and S. W. Cheong, “Magnons and crystal-field transitions in hexagonal RMnO3 (R = Er, Tm, Yb, Lu) single crystals,” Physical Review B, vol. 85, no. 14, Article ID 144422, 11 pages, 2012. View at Publisher · View at Google Scholar
  189. H. A. Salama and G. A. Stewart, “Exchange-induced Tm magnetism in multiferroic h-TmMnO3,” Journal of Physics, vol. 21, no. 38, Article ID 386001, 2009. View at Publisher · View at Google Scholar
  190. J.-S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, “Hexagonal versus perovskite phase of manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu),” Physical Review B, vol. 74, no. 1, Article ID 014422, 7 pages, 2006. View at Google Scholar
  191. U. Adem, M. Mostovoy, N. Bellido, A. A. Nugroho, C. Simon, and T. T. M. Palstra, “Scaling behavior of the magnetocapacitance of YbMnO3,” Journal of Physics, vol. 21, no. 49, Article ID 496002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. H. A. Salama, G. A. Stewart, D. H. Ryan, M. Elouneg-Jamroz, and A. V. J. Edge, “A Mössbauer spectroscopy investigation of h-YbMnO3,” Journal of Physics, vol. 20, no. 25, Article ID 255213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. H. A. Salama, C. J. Voyer, D. H. Ryan, and G. A. Stewart, “Magnetic order of the rare earth sublattice in h-YbMnO3,” Journal of Applied Physics, vol. 105, no. 7, Article ID 07E110, 3 pages, 2009. View at Publisher · View at Google Scholar
  194. V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov, and L. D. Iskhakova, “Magnetic properties and phase transitions in hexagonal DYMnO3 single crystals,” Physics of the Solid State, vol. 48, no. 9, pp. 1726–1729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  195. S. Harikrishnan, S. Rößler, C. M. N. Kumar et al., “Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals,” Journal of Physics, vol. 21, no. 9, Article ID 096002, 2009. View at Publisher · View at Google Scholar
  196. C. Wehrenfennig, D. Meier, T. Lottermoser et al., “Incompatible magnetic order in multiferroic hexagonal DYMnO3,” Physical Review B, vol. 82, no. 10, Article ID 100414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. D. M. Giaquinta and H. C. zur Loye, “Indium manganese trioxide: a new transition metal oxide with an unusual ABO3 structure,” Journal of the American Chemical Society, vol. 114, no. 27, pp. 10952–10953, 1992. View at Publisher · View at Google Scholar
  198. G. V. Vajenine, R. Hoffmann, and H. C. Zur Loye, “The electronic structures and magnetic properties of one-dimensional ABO6 chains in Sr3ABO6 (A = Co, Ni; B = Pt, Ir) and two-dimensional MO3 sheets in InMO3 (M = Fe, Mn),” Chemical Physics, vol. 204, no. 2-3, pp. 469–478, 1996. View at Publisher · View at Google Scholar · View at Scopus
  199. C. R. Serrao, S. B. Krupanidhi, J. Bhattacharjee, U. V. Waghmare, A. K. Kundu, and C. N. R. Rao, “InMnO3: a biferroic,” Journal of Applied Physics, vol. 100, no. 7, Article ID 076104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. A. A. Belik, S. Kamba, M. Savinov et al., “Magnetic and dielectric properties of hexagonal InMnO3,” Physical Review B, vol. 79, no. 5, Article ID 054411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  201. D. A. Rusakov, A. A. Belik, S. Kamba et al., “Structural evolution and properties of solid solutions of hexagonal InMnO3 and InGaO3,” Inorganic Chemistry, vol. 50, no. 8, pp. 3559–3566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  202. S. C. Abrahams, “Ferroelectricity and structure in the YMnO3 family,” Acta Crystallographica, vol. 57, pp. 485–490, 2001. View at Publisher · View at Google Scholar
  203. M. A. Oak, J. H. Lee, H. M. Jang, J. S. Goh, H. J. Choi, and J. F. Scott, “4d-5p Orbital mixing and asymmetric in 4d–O 2p hybridization in InMnO3: a new bonding mechanism for hexagonal ferroelectricity,” Physical Review Letters, vol. 106, no. 4, Article ID 047601, 4 pages, 2011. View at Publisher · View at Google Scholar
  204. X. Fabréges, I. Mirebeau, S. Petit, P. Bonville, and A. A. Belik, “Frustration-driven magnetic order in hexagonal InMnO3,” Physical Review B, vol. 84, Article ID 054455, 2011. View at Publisher · View at Google Scholar
  205. Y. Kumagai, A. Belik, M. Lilienblum, N. Leo, M. Fiebig, and N. A. Spaldin, “Observation of persistent centrosymmetricity in the hexagonal manganite family,” Physical Review B, vol. 85, no. 17, Article ID 174422, 7 pages, 2012. View at Google Scholar
  206. I. Munawar and S. H. Curnoe, “Theory of magnetic phases of hexagonal rare earth manganites,” Journal of Physics, vol. 18, no. 42, article no. 004, pp. 9575–9583, 2006. View at Publisher · View at Google Scholar · View at Scopus