Table of Contents
ISRN Obesity
Volume 2013, Article ID 506751, 5 pages
http://dx.doi.org/10.1155/2013/506751
Research Article

Normal Weight Estonian Prepubertal Boys Show a More Cardiovascular-Risk-Associated Adipose Tissue Distribution than Austrian Counterparts

1Center of Molecular Medicine, Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstraße 31a, 8010 Graz, Austria
2Center of Physiological Medicine, Institute of Physiological Chemistry, University of Graz, 8010 Graz, Austria
3Faculty of Exercise and Sports Sciences, Center of Behavioural and Health Sciences, University of Tartu, 50090 Tartu, Estonia
4Department of Pediatrics, Paracelsus Private Medical University of Salzburg, 5020 Salzburg, Austria
5Practice for General Internal Medicine, Bruck a.d.M., 8600 Graze, Austria
6Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8010 Graz, Austria

Received 4 December 2012; Accepted 21 December 2012

Academic Editors: J. J. Gleysteen, H. Gordish-Dressman, and D. Micic

Copyright © 2013 Sandra J. Wallner-Liebmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Newey, E. Nolte, M. McKee, and E. Mossialos, “Avoidable Mortality in the Enlarged European Union,” ISS Statistics, pp. 7–44, 2004.
  2. C. B. Ebbeling, D. B. Pawlak, and D. S. Ludwig, “Childhood obesity: public-health crisis, common sense cure,” The Lancet, vol. 360, no. 9331, pp. 473–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Jaeger, K. Zellner, K. Kromeyer-Hauschild, R. Lüdde, R. Eisele, and J. Hebebrand, “Body height, body weight and body mass index of German military recruits. Historical retrospect and current status,” Anthropologischer Anzeiger, vol. 59, no. 3, pp. 251–273, 2001. View at Google Scholar · View at Scopus
  4. H. Kaur, M. L. Hyder, and W. S. C. Poston, “Childhood overweight: an expanding problem,” Treatments in Endocrinology, vol. 2, no. 6, pp. 375–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Pietrobelli, “Outcome measurements in paediatric obesity prevention trials,” International Journal of Obesity, vol. 28, supplement 3, pp. S86–S89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pietrobelli and L. Tatò, “Body composition measurements: from the past to the future,” Acta Paediatrica, vol. 94, no. 448, pp. 8–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Druet, K. Ong, and C. Levy Marchal, “Metabolic syndrome in children: comparison of the international diabetes federation 2007 consensus with an adapted national cholesterol education program definition in 300 overweight and obese French children,” Hormone Research in Paediatrics, vol. 73, no. 3, pp. 181–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Maffeis, A. Pietrobelli, A. Grezzani, S. Provera, and L. Tatò, “Waist circumference and cardiovascular risk factors in prepubertal children,” Obesity Research, vol. 9, no. 3, pp. 179–187, 2001. View at Google Scholar · View at Scopus
  9. H. D. McCarthy, “Body fat measurements in children as predictors for the metabolic syndrome: focus on waist circumference,” Proceedings of the Nutrition Society, vol. 65, no. 4, pp. 385–392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Suliga, “Visceral adipose tissue in children and adolescents: a review,” Nutrition Research Reviews, vol. 22, no. 2, pp. 137–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Weiss, J. Dziura, T. S. Burgert et al., “Obesity and the metabolic syndrome in children and adolescents,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2362–2374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Möller, E. Tafeit, K. H. Smolle et al., “Estimating percentage total body fat and determining subcutaneous adipose tissue distribution with a new noninvasive optical device LIPOMETER,” American Journal of Human Biology, vol. 12, no. 2, pp. 221–230, 2000. View at Google Scholar · View at Scopus
  13. E. Tafeit, R. Möller, K. Sudi, and G. Reibnegger, “Artificial neural networks as a method to improve the precision of subcutaneous adipose tissue thickness measurements by means of the optical device LIPOMETER,” Computers in Biology and Medicine, vol. 30, no. 6, pp. 355–365, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. P. S. Kaimbacher, M. Dunitz-Scheer, S. J. Wallner-Liebmann, P. J. Z. Scheer, K. Sudi, and W. J. Schnedl, “Decrease of total subcutaneous adipose tissue from infancy to childhood,” Journal of Pediatric Gastroenterology and Nutrition, vol. 53, no. 5, pp. 553–560, 2011. View at Publisher · View at Google Scholar
  15. R. Moeller, R. Horejsi, S. Pilz et al., “Evaluation of risk profiles by subcutaneous adipose tissue topography in obese juveniles,” Obesity, vol. 15, no. 5, pp. 1319–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Tafeit, R. Mller, K. Sudi, R. Horejsi, A. Berg, and G. Reibnegger, “Orthogonal factor coefficient development of subcutaneous adipose tissue topography (SAT-Top) in girls and boys,” American Journal of Physical Anthropology, vol. 115, no. 1, pp. 57–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Wallner, N. Luschnigg, W. J. Schnedl et al., “Body fat distribution of overweight females with a history of weight cycling,” International Journal of Obesity, vol. 28, no. 9, pp. 1143–1148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Niederlander, “Causes of death in the EU,” KS-NK-06010-EN-N, 2006.
  19. H. Mangge, G. Almer, S. Haj-Yahya et al., “Preatherosclerosis and adiponectin subfractions in obese adolescents,” Obesity, vol. 16, no. 12, pp. 2578–2584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. J. Cole, “The LMS method for constructing normalized growth standards,” European Journal of Clinical Nutrition, vol. 44, no. 1, pp. 45–60, 1990. View at Google Scholar · View at Scopus
  21. K. Kromeyer-Hauschild, M. Wabitsch, D. Kunze et al., “Percentiles of body mass index in children and adolescents evaluated from different regional German studies,” Monatsschrift fur Kinderheilkunde, vol. 149, no. 8, pp. 807–818, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. T. J. Cole, M. C. Bellizzi, K. M. Flegal, and W. H. Dietz, “Establishing a standard definition for child overweight and obesity worldwide: international survey,” British Medical Journal, vol. 320, no. 7244, pp. 1240–1243, 2000. View at Google Scholar · View at Scopus
  23. R. Horejsi, R. Möller, T. R. Pieber et al., “Differences of subcutaneous adipose tissue topography between type-2 diabetic men and healthy controls,” Experimental Biology and Medicine, vol. 227, no. 9, pp. 794–798, 2002. View at Google Scholar · View at Scopus
  24. H. Vides, P. M. Nilsson, V. Sarapuu, T. Podar, Isacsson, and B. F. Scherstén, “Diabetes and social conditions in Estonia: a population-based study,” European Journal of Public Health, vol. 11, no. 1, pp. 60–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Power and J. Schulkin, “Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins,” British Journal of Nutrition, vol. 99, no. 5, pp. 931–940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Aucouturier, M. Meyer, D. Thivel, M. Taillardat, and P. Duché, “Effect of android to gynoid fat ratio on insulin resistance in obese youth,” Archives of Pediatrics and Adolescent Medicine, vol. 163, no. 9, pp. 826–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Mangge, G. Almer, S. Haj-Yahya et al., “Nuchal thickness of subcutaneous adipose tissue is tightly associated with an increased LMW/total adiponectin ratio in obese juveniles,” Atherosclerosis, vol. 203, no. 1, pp. 277–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Mangge, G. Almer, M. Truschnig-Wilders, A. Schmidt, R. Gasser, and D. Fuchs, “Inflammation, adiponectin, obesity and cardiovascular risk,” Current Medicinal Chemistry, vol. 17, no. 36, pp. 4511–4520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Prüller, R. B. Raggam, V. Posch et al., “Trunk weighted obesity, cholesterol levels and low grade inflammation are main determinants for enhanced thrombin generation,” Atherosclerosis, vol. 220, no. 1, pp. 215–218, 2012. View at Publisher · View at Google Scholar
  30. O. Y. Addo and J. H. Himes, “Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents,” American Journal of Clinical Nutrition, vol. 91, no. 3, pp. 635–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. B. Sisson, P. T. Katzmarzyk, S. R. Srinivasan et al., “Ethnic differences in subcutaneous adiposity and waist girth in children and adolescents,” Obesity, vol. 17, no. 11, pp. 2075–2081, 2009. View at Publisher · View at Google Scholar · View at Scopus