Table of Contents
ISRN Environmental Chemistry
Volume 2013 (2013), Article ID 514154, 8 pages
http://dx.doi.org/10.1155/2013/514154
Research Article

Batch Adsorption of Maxilon Red GRL from Aqueous Solution by Natural Sugarcane Stalks Powder

Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt

Received 23 May 2013; Accepted 1 July 2013

Academic Editors: F. Long, A. Waseem, and C. Waterlot

Copyright © 2013 Gamal Owes El-Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Chiou, P. Ho, and H. Y. Li, “Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads,” Dyes and Pigments, vol. 60, no. 1, pp. 69–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, “Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution,” Dyes and Pigments, vol. 64, no. 3, pp. 187–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. I. A. Şengil and M. Özacar, “The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1369–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, “Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions,” Desalination, vol. 261, no. 1-2, pp. 52–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Basha, K. V. Selvakumar, H. J. Prabhu, P. Sivashanmugam, and C. W. Lee, “Degradation studies for textile reactive dye by combined electrochemical, microbial and photocatalytic methods,” Separation and Purification Technology, vol. 79, no. 3, pp. 303–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Gutiérrez, M. Pepió, M. Crespi, and N. Mayor, “Control factors in the electrochemical oxidation of reactive dyes,” Coloration Technology, vol. 117, no. 6, pp. 356–361, 2001. View at Google Scholar · View at Scopus
  7. M. S. Lucas, A. A. Dias, A. Sampaio, C. Amaral, and J. A. Peres, “Degradation of a textile reactive Azo dye by a combined chemical-biological process: Fenton's reagent-yeast,” Water Research, vol. 41, no. 5, pp. 1103–1109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. A. Salem and M. S. El-Maazawi, “Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces,” Chemosphere, vol. 41, no. 8, pp. 1173–1180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. N. M. Mahmoodi, M. Arami, N. Y. Limaee, and N. S. Tabrizi, “Decolorization and aromatic ring degradation kinetics of direct red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst,” Chemical Engineering Journal, vol. 112, no. 1–3, pp. 191–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Saquib and M. Muneer, “TiO2/mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions,” Dyes and Pigments, vol. 56, no. 1, pp. 37–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. N. N. Rao, K. M. Somasekhar, S. N. Kaul, and L. Szpyrkowicz, “Electrochemical oxidation of tannery wastewater,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 11, pp. 1124–1131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. V. Mohan, M. Srimurali, P. Sailaja, and J. Karthikeyan, “A study of acid dye color removal from aqueous solution using adsorption and coagulation,” Environmental Engineering Policy, vol. 1, pp. 149–154, 1999. View at Google Scholar
  13. G. Chen, L. Lei, X. Hu, and P. L. Yue, “Kinetic study into the wet air oxidation of printing and dyeing wastewater,” Separation and Purification Technology, vol. 31, no. 1, pp. 71–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Sotelo, G. Ovejero, J. A. Delgado, and I. Martínez, “Adsorption of lindane from water onto GAC: effect of carbon loading on kinetic behavior,” Chemical Engineering Journal, vol. 87, no. 1, pp. 111–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Jain and S. Sikarwar, “Adsorptive removal of Erythrosine dye onto activated low cost de-oiled mustard,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 627–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, and C. Zhang, “Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies,” Desalination, vol. 254, no. 1–3, pp. 68–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Abramian and H. El-Rassy, “Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel,” Chemical Engineering Journal, vol. 150, no. 2-3, pp. 403–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Shawabkeh and M. F. Tutunji, “Experimental study and modeling of basic dye sorption by diatomaceous clay,” Applied Clay Science, vol. 24, no. 1-2, pp. 111–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Roulia and A. A. Vassiliadis, “Sorption characterization of a cationic dye retained by clays and perlite,” Microporous and Mesoporous Materials, vol. 116, no. 1–3, pp. 732–740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. B. Karim, B. Mounir, M. Hachkar, M. Bakasse, and A. Yaacoubi, “Removal of basic red 46 dye from aqueous solution by adsorption onto Moroccan clay,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 304–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Chen, J. Zhao, A. Zhong, and Y. Jin, “Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue,” Chemical Engineering Journal, vol. 174, no. 1, pp. 143–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Liu and Y. J. Liu, “Biosorption isotherms, kinetics and thermodynamics,” Separation and Purification Technology, vol. 61, no. 3, pp. 229–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. E. Ofomaja, “Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust,” Chemical Engineering Journal, vol. 143, no. 1–3, pp. 85–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Witek-Krowiak, R. G. Szafran, and S. Modelski, “Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent,” Desalination, vol. 265, no. 1–3, pp. 126–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Koyuncu, “Adsorption properties of basic dyes (Maxilon red GRL and maxilon yellow GRL) onto bentonite,” Asian Journal of Chemistry, vol. 21, no. 7, pp. 5458–5464, 2009. View at Google Scholar · View at Scopus
  26. M. Doǧan, M. H. Karaoǧlu, and M. Alkan, “Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 1142–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Koyuncu, “Removal of maxilon red GRL from aqueous solutions by adsorption onto silica,” Oriental Journal of Chemistry, vol. 25, no. 1, pp. 35–40, 2009. View at Google Scholar · View at Scopus
  28. M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen, and M. N. Ahmad, “The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth,” Journal of Environmental Management, vol. 69, no. 3, pp. 229–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Y. Chen, J. C. Chang, and A. H. Chen, “Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 430–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. D. K. Mahmoud, M. A. M. Salleh, W. A. W. A. Karim, A. Idris, and Z. Z. Abidin, “Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies,” Chemical Engineering Journal, vol. 181-182, pp. 449–457, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. V. K. Gupta and A. Rastogi, “Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 396–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Gong, S. Zhu, D. Zhang, J. Chen, S. Ni, and R. Guan, “Adsorption behavior of cationic dyes on citric acid esterifying wheat straw: kinetic and thermodynamic profile,” Desalination, vol. 230, no. 1–3, pp. 220–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Hamdaoui, “Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick,” Journal of Hazardous Materials, vol. 135, no. 1–3, pp. 264–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Kavitha and C. Namasivayam, “Experimental and kinetic studies on methylene blue adsorption by coir pith carbon,” Bioresource Technology, vol. 98, no. 1, pp. 14–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Ghosh and K. G. Bhattacharyya, “Adsorption of methylene blue on kaolinite,” Applied Clay Science, vol. 20, no. 6, pp. 295–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. G. O. El-Sayed, “Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber,” Desalination, vol. 272, no. 1–3, pp. 225–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” The Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Google Scholar · View at Scopus
  38. T. W. Weber and R. K. Chakravorti, “Pore and solid diffusion models for fixed-bed adsorbers,” AIChE Journal, vol. 20, no. 2, pp. 228–238, 1974. View at Google Scholar · View at Scopus
  39. H. M. F. Freundlich, “Over the adsorption in solution,” Journal of Physical Chemistry, vol. 57, pp. 385–470, 1906. View at Google Scholar
  40. V. K. Gupta, A. Mittal, L. Krishnan, and V. Gajbe, “Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash,” Separation and Purification Technology, vol. 40, no. 1, pp. 87–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. K. Jain, V. K. Gupta, A. Bhatnagar, and S. Suhas, “Utilization of industrial waste products as adsorbents for the removal of dyes,” Journal of Hazardous Materials, vol. 101, no. 1, pp. 31–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Horsfall Jr., A. I. Spiff, and A. A. Abia, “Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta Cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution,” Bulletin of the Korean Chemical Society, vol. 25, no. 7, pp. 969–976, 2004. View at Google Scholar · View at Scopus
  43. N. T. Abdel-Ghani and G. A. Elchaghaby, “Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption,” International Journal of Environmental Science and Technology, vol. 4, no. 4, pp. 451–456, 2007. View at Google Scholar · View at Scopus
  44. S. Lagergren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898. View at Google Scholar
  45. Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Xia, Y. Jing, Y. Jia, D. Yue, J. Ma, and X. Yin, “Adsorption properties of congo red from aqueous solution on modified hectorite: kinetic and thermodynamic studies,” Desalination, vol. 265, no. 1–3, pp. 81–87, 2011. View at Publisher · View at Google Scholar · View at Scopus