Table of Contents
ISRN Computational Biology
Volume 2013, Article ID 520435, 9 pages
http://dx.doi.org/10.1155/2013/520435
Research Article

Cystathionine β-Lyase-Like Protein with Pyridoxal Binding Domain Characterized in Leishmania major by Comparative Sequence Analysis and Homology Modelling

1Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151 001, India
2Centre for Biosciences, Central University of Punjab, Bathinda, Punjab 151 001, India
3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India

Received 21 May 2013; Accepted 8 June 2013

Academic Editors: F. Barbault and G. Colonna

Copyright © 2013 Arvind Negi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Singh, F. Spyrakis, P. Cozzini et al., “Chemogenomics of pyridoxal 5-phosphate dependent enzymes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 1, pp. 183–194, 2013. View at Google Scholar
  2. A. L. Manders, A. F. Jaworski, M. Ahmed, and S. M. Aitken, “Exploration of structure-function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-spectific substitutions,” Biochimica et Biophysica Acta, 2013. View at Google Scholar
  3. L. Kang, A. C. Shaw, D. Xu et al., “Upregulation of MetC is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain,” Journal of Bacteriology, vol. 193, no. 5, pp. 1098–1106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. Ejim, V. M. D'Costa, N. H. Elowe, J. C. Loredo-Osti, D. Malo, and G. D. Wright, “Cystathionine β-lyase is important for virulence of Salmonella enterica serovar typhimurium,” Infection and Immunity, vol. 72, no. 6, pp. 3310–3314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. J. Ejim, J. E. Blanchard, K. P. Koteva et al., “Inhibitors of bacterial cystathionine β-lyase: leads for new antimicrobial agents and probes of enzyme structure and function,” Journal of Medicinal Chemistry, vol. 50, no. 4, pp. 755–764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Leifso, G. Cohen-Freue, N. Dogra, A. Murray, and W. R. McMaster, “Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed,” Molecular and Biochemical Parasitology, vol. 152, no. 1, pp. 35–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Peacock, K. Seeger, D. Harris et al., “Comparative genomic analysis of three Leishmania species that cause diverse human disease,” Nature Genetics, vol. 39, no. 7, pp. 839–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. http://old.genedb.org/genedb/Search?name=LmjF14.0460&organism=leish.
  9. A. Read, I. Hurwitz, and R. Durvasula, “Leishmaniasis: an update on a neglected tropical disease,” Dynamic Models of Infectious Diseases, pp. 95–138, 2013. View at Google Scholar
  10. C. Paz, S. Samake, J. M. Anderson et al., “Leishmania major, the predominant Leishmania species responsible for cutaneous Leishmaniasis in Mali,” The American Journal of Tropical Medicine and Hygiene, vol. 88, no. 3, pp. 583–585, 2013. View at Google Scholar
  11. A. O. d. Santos, E. Izumi, T. Ueda-Nakamura et al., “Antileishmanial activity of diterpene acids in copaiba oil,” Memórias do Instituto Oswaldo Cruz, vol. 108, no. 1, pp. 59–64, 2013. View at Google Scholar
  12. P. M. Loiseau and G. Barratt, “Drug targets, drug effectors, and drug targeting and delivery,” in Drug Resistance in Leishmania Parasites, pp. 321–350, Springer, 2013. View at Google Scholar
  13. S. Sundar and J. Chakravarty, “Leishmaniasis: an update of current pharmacotherapy,” Expert Opinion on Pharmacotherapy, vol. 14, pp. 53–63, 2013. View at Google Scholar
  14. A. Ponte-Sucre, “Introduction: Leishmaniasis—the biology of a parasite,” in Drug Resistance in Leishmania Parasites, pp. 1–12, Springer, 2013. View at Google Scholar
  15. W. R. Pearson, “Effective protein sequence comparison,” Methods in Enzymology, vol. 266, pp. 227–256, 1996. View at Google Scholar · View at Scopus
  16. S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970. View at Google Scholar · View at Scopus
  17. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar · View at Scopus
  18. T. Fechteler, U. Dengler, and D. Schomburg, “Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria,” Journal of Molecular Biology, vol. 253, no. 1, pp. 114–131, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wang, P. Cieplak, and P. A. Kollman, “How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?” Journal of Computational Chemistry, vol. 21, no. 12, pp. 1049–1074, 2000. View at Google Scholar · View at Scopus
  20. I. G. Tironi, R. Sperb, P. E. Smith, and W. F. Van Gunsteren, “A generalized reaction field method for molecular dynamics simulations,” The Journal of Chemical Physics, vol. 102, no. 13, pp. 5451–5459, 1995. View at Google Scholar · View at Scopus
  21. P. Labute, “The generalized born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area,” Journal of Computational Chemistry, vol. 29, no. 10, pp. 1693–1698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Zhang, G. Vasmatzis, J. L. Cornette, and C. DeLisi, “Determination of atomic desolvation energies from the structures of crystallized proteins,” Journal of Molecular Biology, vol. 267, no. 3, pp. 707–726, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Miyazawa and R. L. Jernigan, “Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation,” Macromolecules, vol. 18, no. 3, pp. 534–552, 1985. View at Google Scholar · View at Scopus
  24. G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of molecular biology, vol. 7, pp. 95–99, 1963. View at Google Scholar · View at Scopus
  25. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, no. 2, pp. 283–291, 1993. View at Google Scholar
  26. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Google Scholar · View at Scopus
  27. D. Eisenberg, R. Lüthy, and J. U. Bowie, “VERIFY3D: assessment of protein models with three-dimensional profiles,” Methods in Enzymology, vol. 277, pp. 396–406, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic acids research, vol. 35, pp. W407–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Sippl, “Recognition of errors in three-dimensional structures of proteins,” Proteins, vol. 17, no. 4, pp. 355–362, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Marchler-Bauer, J. B. Anderson, P. F. Cherukuri et al., “CDD: a conserved domain database for protein classification,” Nucleic Acids Research, vol. 33, pp. D192–D196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Marchler-Bauer, J. B. Anderson, M. K. Derbyshire et al., “CDD: a conserved domain database for interactive domain family analysis,” Nucleic Acids Research, vol. 35, no. 1, pp. D237–D240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94,” Journal of Computational Chemistry, vol. 17, no. 5-6, pp. 490–519, 1996. View at Google Scholar · View at Scopus
  33. “Measuring proteins and voids in proteins.,” in Proceedings of the 28th Hawaii International Conference on System Sciences, H. Edelsbrunner, M. Facello, P. Fu, and J. Liang, Eds., vol. 5, IEEE, 1995.