Table of Contents
ISRN Mechanical Engineering
Volume 2013, Article ID 526192, 18 pages
http://dx.doi.org/10.1155/2013/526192
Review Article

A Critical Review of Stall Control Techniques in Industrial Fans

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
2Fläkt Woods Limited, Axial Way, Colchester, Essex CO4 5ZD, UK

Received 30 March 2013; Accepted 24 April 2013

Academic Editors: J. Clayton, J. Hu, J.-I. Jang, J. Seok, and D. Zhou

Copyright © 2013 Stefano Bianchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. de Jager, “Rotating stall and surge control: a survey,” in Proceedings of the 34th IEEE Conference on Decision and Control, pp. 1857–1862, New Orleans, LA , USA, December 1995. View at Scopus
  2. E. M. Greitzer, “Review—axial compressor stall phenomena,” Journal of Fluids Engineering, Transactions of the ASME, vol. 102, no. 2, pp. 134–151, 1980. View at Google Scholar · View at Scopus
  3. I. J. Day and N. A. Cumpsty, “The measurement and interpretation of flow within rotating stall cells in axial compressors,” Journal of Mechanical Engineering Science, vol. 20, no. 2, pp. 101–114, 1978. View at Google Scholar · View at Scopus
  4. F. K. Moore, “A theory of rotating stall of multistage compressors, parts I–III,” Journal of Engineering for Gas Turbines and Power, vol. 106, no. 2, pp. 313–336, 1984. View at Google Scholar · View at Scopus
  5. H. W. Emmons, C. E. Pearson, and H. P. Grant, “Compressor surge and stall propagation,” Transactions of the ASME, vol. 77, pp. 455–469, 1955. View at Google Scholar
  6. J. T. Gravdahl and O. Egeland, Compressor Surge and Rotating Stall: Modeling and Control, Springer, London, UK, 1999.
  7. A. G. Sheard and A. Corsini, “The mechanical impact of aerodynamic stall on tunnel ventilation fans,” International Journal of Rotating Machinery, vol. 2012, Article ID 402763, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Fink, N. A. Cumpsty, and E. M. Greitzer, “Surge dynamics in a free-spool centrifugal compressor system,” Journal of Turbomachinery, vol. 114, no. 2, pp. 321–332, 1992. View at Google Scholar · View at Scopus
  9. A. M. Wo and J. P. Bons, “Flow physics leading to system instability in a centrifugal pump,” Journal of Turbomachinery, vol. 116, no. 4, pp. 612–621, 1994. View at Google Scholar · View at Scopus
  10. J. D. Paduano, A. H. Epstein, L. Valavani, J. P. Longley, E. M. Greitzer, and G. R. Guenette, “Active control of rotating stall in a low-speed axial compressor,” Journal of Turbomachinery, vol. 115, no. 1, pp. 48–57, 1993. View at Google Scholar · View at Scopus
  11. J. Parduano, L. Valavani, and A. H. Epstein, “Parameter identification of compressor dynamics during closed-loop operation,” Journal of Dynamic Systems, Measurement and Control, vol. 115, no. 4, pp. 694–703, 1993. View at Google Scholar · View at Scopus
  12. J. D. Paduano, L. Valavani, A. H. Epstein, E. M. Greitzer, and G. R. Guenette, “Modeling for control of rotating stall,” Automatica, vol. 30, no. 9, pp. 1357–1373, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Pinsley, G. R. Guenette, A. H. Epstein, and E. M. Greitzer, “Active stabilization of centrifugal compressor surge,” Journal of Turbomachinery, vol. 113, no. 4, pp. 723–732, 1991. View at Google Scholar
  14. C. Rodgers, “Centrifugal compressor inlet guide vanes for increased surge margin,” Journal of Turbomachinery, vol. 113, no. 4, pp. 696–702, 1991. View at Google Scholar
  15. J. S. Simon and L. Valavani, “A Lyapunov based nonlinear control scheme for stabilizing a basic compression system using a close-coupled control valve,” in Proceedings of the American Control Conference, vol. 3, pp. 2398–2406, June 1991. View at Scopus
  16. J. S. Simon, L. Valavani, A. H. Epstein, and E. M. Greitzer, “Evaluation of approaches to active compressor surge stabilization,” Journal of Turbomachinery, vol. 115, no. 1, pp. 57–67, 1993. View at Google Scholar · View at Scopus
  17. I. J. Day, “Axial compressor performance during surge,” Journal of Propulsion and Power, vol. 10, no. 3, pp. 329–336, 1994. View at Google Scholar · View at Scopus
  18. G. Eisenlohr and H. Chladek, “Thermal tip clearance control for centrifugal compressor of an APU engine,” Journal of Turbomachinery, vol. 116, no. 4, pp. 629–634, 1994. View at Google Scholar · View at Scopus
  19. A. H. Epstein, J. E. F. Williams, and E. M. Greitzer, “Active suppression of aerodynamic instabilities in turbomachines,” Journal of Propulsion and Power, vol. 5, no. 2, pp. 204–211, 1989. View at Google Scholar · View at Scopus
  20. K. M. Eveker and C. N. Nett, “Model development for active surge control/rotating stall avoidance in aircraft gas turbine engines,” in Proceedings of the American Control Conference, pp. 3166–3172, June 1991. View at Scopus
  21. K. M. Eveker and C. N. Nett, “Control of compression system surge and rotating shell: a laboratory-based 'hands-on' introduction,” in Proceedings of the American Control Conference, vol. 2, pp. 1307–1311, June 1993. View at Scopus
  22. K. M. Eveker, D. L. Gysling, C. N. Nett, and O. P. Sharma, “Integrated control of rotating stall and surge in aeroengines,” in Sensing, Actuation, and Control in Aeropropulsion, pp. 21–35, April 1995. View at Scopus
  23. J. E. F. Williams, M. F. L. Harper, and D. J. Allwright, “Active stabilization of compressor instability and surge in a working engine,” Journal of Turbomachinery, vol. 115, no. 1, pp. 68–75, 1993. View at Google Scholar · View at Scopus
  24. J. E. F. Williams and X. Y. Huang, “Active stabilization of compressor surge,” Journal of Fluid Mechanics, vol. 204, pp. 245–262, 1989. View at Google Scholar · View at Scopus
  25. A. Goto, “Suppression of mixed-flow pump instability and surge by the active alteration of impeller secondary flows,” Journal of Turbomachinery, vol. 116, no. 4, pp. 621–628, 1994. View at Google Scholar · View at Scopus
  26. E. M. Greitzer and F. K. Moore, “A theory of post-stall transients in axial compression systems: part II—application,” Journal of Engineering for Gas Turbines and Power, vol. 108, no. 2, pp. 231–239, 1986. View at Google Scholar · View at Scopus
  27. D. L. Gysling, M. Dugundji, J. E. Greitzer, and A. H. Epstein, “Dynamic control of centrifugal compressor surge using tailored structures,” Journal of Turbomachinery, vol. 113, no. 4, pp. 710–722, 1991. View at Google Scholar
  28. W. W. Copenhaver and T. H. Okiishi, “Rotating stall performance and recoverability of a high-speed 10-stage axial flow compressor,” Journal of Propulsion and Power, vol. 9, no. 2, pp. 281–292, 1993. View at Google Scholar · View at Scopus
  29. I. J. Day, “Stall inception in axial flow compressors,” Journal of Turbomachinery, vol. 115, no. 1, pp. 1–9, 1993. View at Google Scholar · View at Scopus
  30. K. H. Kim and S. Fleeter, “Compressor unsteady aerodynamic response to rotating stall and surge excitations,” Journal of Propulsion and Power, vol. 10, no. 5, pp. 698–708, 1994. View at Google Scholar · View at Scopus
  31. S. Bianchi, A. Corsini, and A. G. Sheard, “Detection of stall regions in a low-speed axial fan, part 1: azimuthal acoustic measurements,” in Proceedings of the 55th American Society of Mechanical Engineers Turbine and Aeroengine Congress, Glasgow, UK, Paper No. GT2010-22753, June 2010.
  32. M. M. Bright, H. Qammar, H. Vhora, and M. Schaffer, “Rotating pip detection and stall warning in high-speed compressors using structure function,” in Proceedings of the AGARD RTO AVT Conference, Toulouse, France, May 1998.
  33. T. R. Camp and I. J. Day, “A study of spike and modal stall phenomena in a low-speed axial compressor,” Journal of Turbomachinery, vol. 120, no. 3, pp. 393–401, 1998. View at Google Scholar · View at Scopus
  34. A. Deppe, H. Saathoff, and U. Stark, “Spike-type stall inception in axial flow compressors,” in Proceedings of the 6th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 178–188, Lille, France, 2005.
  35. H. D. Vo, C. S. Tan, and E. M. Greitzer, “Criteria for spike initiated rotating stall,” in Proceedings of the 50th American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, Reno, NV, USA, Paper No. GT2005-68374, June 2005.
  36. S. Bianchi, A. Corsini, L. Mazzucco, L. Monteleone, and A. G. Sheard, “Stall inception, evolution and control in a low speed axial fan with variable pitch in motion,” Journal of Engineering for Gas Turbines and Power, vol. 134, no. 4, Article ID 042602, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. N. A. Cumpsty, “Part-circumference casing treatment and the effect on compressor stall,” in Proceedings of the 34th American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, Toronto, ON, Canada, Paper No. 89-GT-312, June 1989.
  38. L. Mongeau, D. E. Thompson, and D. K. Mclaughlin, “A method for characterizing aerodynamic sound sources in turbomachines,” Journal of Sound and Vibration, vol. 181, no. 3, pp. 369–389, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Okada, “Experiences with flow-induced vibration and low frequency noise due to rotating stall of centrifugal fan,” Journal of Low Frequency Noise and Vibration, vol. 6, no. 2, pp. 76–87, 1987. View at Google Scholar · View at Scopus
  40. F. Kameier and W. Neise, “Rotating blade flow instability as a source of noise in axial turbomachines,” Journal of Sound and Vibration, vol. 203, no. 5, pp. 833–853, 1997. View at Google Scholar · View at Scopus
  41. A. G. Sheard, A. Corsini, and S. Bianchi, “Detection of stall regions in a low-speed axial fan, part 2: stall warning by visualisation of sound signals,” in Proceedings of the 55th American Society of Mechanical Engineers Turbine and Aeroengine Congress, pp. 14–18, Glasgow, UK, Paper No. GT2010-22754, June 2010.
  42. A. Rippl, Experimentelle Untersuchungen Zuminstationaren Betriebsverhahenan der Stabilitarsgrenze Eines Mehrstufigen Transsonischen Verdichters [Ph.D. thesis], Ruhr-Universitat Bochum, 1995.
  43. A. G. Sheard and N. M. Jones, “Powered smoke and heat exhaust ventilators: the impact of EN 12101-3 and ISO 21927-3,” Tunnelling and Underground Space Technology, vol. 28, no. 1, pp. 174–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. EN12101-3, “Smoke and heat control systems. Specification for powered smoke and heat exhaust ventilators,” 2002.
  45. ISO and 21927-3, “Smoke and heat control systems—part 3: specification for powered smoke and heat exhaust ventilators.,” 2006.
  46. A. G. Sheard and A. Corsini, “The impact of an anti-stall stabilisation ring on industrial fan performance: implications for fan selection,” in Proceedings of the 56th American Society of Mechanical Engineers Turbine and Aeroengine Congress, Vancouver, BC, Canada, Paper No. GT2011-45187, June 2011.
  47. D. Borello, A. Corsini, G. Delibra, F. Rispoli, and A. G. Sheard, “Numerical investigation on the aerodynamics of a tunnel ventilation fan during pressure pulses,” in Proceedings of the 10th European Turbomachinery Conference, pp. 573–582, Lappeenranta, Finland, April, 2013.
  48. M. Gad-el-Hak, Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, Cambridge, UK, 2000.
  49. R. D. Joslin, R. H. Thomas, and M. M. Choudhari, “Synergism of flow and noise control technologies,” Progress in Aerospace Sciences, vol. 41, no. 5, pp. 363–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. K. L. Suder, M. D. Hathaway, S. A. Thorp, A. J. Strazisar, and M. B. Bright, “Compressor stability enhancement using discrete tip injection,” Journal of Turbomachinery, vol. 123, no. 1, pp. 14–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Nie, G. Xu, X. Cheng, and J. Chen, “Micro air injection and its unsteady response in a low-speed axial compressor,” Journal of Turbomachinery, vol. 124, no. 4, pp. 572–579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Lin, Z. Tong, S. Geng, J. Zhang, J. Chen, and C. Nie, “A summary of stall warning and suppression research with micro tip injection,” in Proceedings of the 56th American Society of Mechanical Engineers Turbine and Aeroengine Congress, Vancouver, BC, Canada, Paper No. GT2011-46118, June 2011.
  53. H. J. Weigl, J. D. Paduano, L. G. Frechette et al., “Active stabilization of rotating stall and surge in a transonic single stage axial compressor,” in Proceedings of the International Gas Turbine & Aeroengine Congress & Exposition, June 1997. View at Scopus
  54. H. D. Vo, J. Cameron, and S. Morris, “Control of short length-scale rotating stall inception on a high-speed axial compressor with plasma actuation,” in Proceedings of the 53rd American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, Berlin, Germany, Paper No. GT2008-50967, June 2008.
  55. T. C. Corke and M. L. Post, “Overview of plasma flow control: concepts, optimization, and applications,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, Paper No. AIAA 2005–563, January 2005. View at Scopus
  56. H. D. Vo, “Active suppression of rotating stall inception with distributed jet actuation,” International Journal of Rotating Machinery, vol. 2007, Article ID 56808, 15 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. V. R. Prasad, Y. Neumeier, M. Lal, S. H. Bae, and A. Meehan, “Experimental investigation of active and passive control of rotating stall in axial compressors,” in Proceedings of the IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD '99), pp. 985–990, August 1999. View at Scopus
  58. S. Yeung and R. M. Murray, “Reduction of bleed valve rate requirements for control of rotating stall using continuous air injection,” in Proceedings of the IEEE International Conference on Control Applications, pp. 683–690, October 1997. View at Scopus
  59. C. S. Tan, I. Day, S. Morris, and A. Wadia, “Spike-type compressor stall inception, detection, and control,” Annual Review of Fluid Mechanics, vol. 42, pp. 275–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. K. Ivanov, “Axial blower,” US Patent, 3, 189–260, 1965.
  61. S. Karlsson and T. Holmkvist, “Guide vane ring for a return flow passage in axial fans and a method of protecting it,” US Patent 4, 602, 410, 1986.
  62. T. Houghton and I. Day, “Enhancing the stability of subsonic compressors using casing grooves,” Journal of Turbomachinery, vol. 133, no. 2, Article ID 021007, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Yamaguchi, M. Ogata, and Y. Kato, “Improvement of stalling characteristics of an axial-flow fan by radial-vaned air-separators nobuyuki yamaguchi,” Journal of Turbomachinery, vol. 132, no. 2, Article ID 021015, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. R. Wadia, D. Christensen, and J. V. Prasad, “Compressor stability management in aircraft engines,” in Proceedings of the 25th Congress of the International Council of the Aeronautical Sciences, ICAS, Hamburg, Germany, 2006-5.4.2, Paper No. 759, 2006.
  65. D. Christensen, P. Cantin, D. Gutz et al., “Development and demonstration of a stability management system for gas turbine engines,” Journal of Turbomachinery, vol. 130, no. 3, Article ID 031011, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Cameron and S. Morris, “Spatial correlation based stall inception analysis,” in Proceedings of the 52nd American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, pp. 14–17, Montreal, Canada, Paper No. GT2007-28268, May 2007.
  67. M. Dhingra, Y. Neumeier, J. V. R. Prasad, A. Breeze-Stringfellow, H.-W. Shin, and P. N. Szucs, “A stochastic model for a compressor stability measure,” Journal of Engineering for Gas Turbines and Power, vol. 129, no. 3, pp. 730–737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Tryfonidis, O. Etchevers, J. D. Paduano, A. H. Epstein, and G. J. Hendricks, “Prestall behavior of several high-speed compressors,” Journal of Turbomachinery, vol. 117, no. 1, pp. 62–80, 1995. View at Google Scholar · View at Scopus
  69. H. G. Park, Unsteady disturbance structures in axial flow compressor stall inception [M.S. thesis], Massachusetts Institute of Technology, Cambridge, MA, USA, 1994.
  70. S. Bianchi, A. Corsini, and A. G. Sheard, “Demonstration of a stall detection system for induced-draft fans,” Journal of Power & Energy, 2013. View at Publisher · View at Google Scholar
  71. S. Bianchi, A. Corsini, and A. G. Sheard, “Experiments on the use of symmetrized dot patterns for in-service stall detection in industrial fans,” Advances in Acoustic and Vibration, vol. 2013, Article ID 610407, 10 pages, 2013. View at Publisher · View at Google Scholar
  72. Eurovent1/11, Fans and System Stall: Problems and Solution, 2007.
  73. H. Bard, “The stabilization of axial fan performance,” in Proceedings of the Institution of Mechanical Engineers (IMechE) Conference C120/84 on the Installation Effects in Ducted Fan Systems, pp. 100–106, 1984.