Table of Contents
ISRN Inorganic Chemistry
Volume 2013 (2013), Article ID 538157, 10 pages
http://dx.doi.org/10.1155/2013/538157
Research Article

Antimicrobial Bioplastics: Synthesis and Characterization of Thermally Stable Starch and Lysine-Based Polymeric Ligand and Its Transition Metals Incorporated Coordination Polymer

Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India

Received 9 August 2012; Accepted 3 September 2012

Academic Editors: V. Barba, M. Monge, and J. Zhang

Copyright © 2013 Nahid Nishat and Ashraf Malik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, and K. Ueda, “Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin,” Journal of Hazardous Materials, vol. 146, no. 1-2, pp. 39–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ito, M. Hattori, T. Yoshida, and K. Takahashi, “Reversible regulation of gelatinization of potato starch with poly(ε-lysine) and amino acids,” Starch, vol. 56, no. 12, pp. 570–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Evans, W. G. Davids, J. D. MacRae, and A. Amirbahman, “Kinetics of cadmium uptake by chitosan-based crab shells,” Water Research, vol. 36, no. 13, pp. 3219–3226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Y. Hsein and G. L. Rorer, “Heterogeneous cross-linking of chitosan gel beads: kinetics, modeling, and influence on cadmium ion adsorption capacity,” Industrial & Engineering Chemistry Research, vol. 36, no. 9, pp. 3631–3638, 1997. View at Publisher · View at Google Scholar
  5. O. A. C. J. Monteiro and C. Airoldi, “Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system,” International Journal of Biological Macromolecules, vol. 26, no. 2-3, pp. 119–128, 1999. View at Publisher · View at Google Scholar
  6. G. Rojas, J. Silva, J. A. Flores, A. Rodriguez, M. Ly, and H. Maldonodo, “Adsorption of chromium onto cross-linked chitosan,” Separation and Purification Technology, vol. 44, no. 1, pp. 31–36, 2005. View at Publisher · View at Google Scholar
  7. R. S. Vieira and M. M. Beppu, “Interaction of natural and crosslinked chitosan membranes with Hg(II) ions,” Colloids and Surfaces A, vol. 279, no. 1–3, pp. 196–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. S. Juang and C. Y. Ju, “Kinetics of sorption of Cu(II)−ethylenediaminetetraacetic acid chelated anions on cross-linked, polyaminated chitosan beads,” Industrial & Engineering Chemistry Research, vol. 37, no. 8, pp. 3463–3469, 1998. View at Publisher · View at Google Scholar
  9. Y. H. Gao, K. Oshita, K. H. Lee, S. Motomizu, and M. Oshima, “Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry,” Analyst, vol. 127, no. 12, pp. 1713–1719, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Paradossi, F. Cavalieri, and V. Crescenzi, “1H NMR relaxation study of a chitosan-cyclodextrin network,” Carbohydrate Research, vol. 300, no. 1, pp. 77–84, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. W. S. W. Nagh, S. A. Ghani, and A. Kamari, “Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads,” Bioresource Technology, vol. 96, no. 4, pp. 443–450, 2005. View at Publisher · View at Google Scholar
  12. I. Arvanitoyannis and C. G. Biliaderis, “Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch,” Carbohydrate Polymers, vol. 38, no. 1, pp. 47–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. A. Muzzarelli and R. Rocchetti, “Enhanced capacity of chitosan for transition-metal ions in sulphate-sulphuric acid solutions,” Talanta, vol. 21, no. 11, pp. 1137–1143, 1974. View at Google Scholar · View at Scopus
  14. A. Sabaruddin, K. Oshita, M. Oshima, and S. Motomizu, “Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry,” Analytica Chimica Acta, vol. 542, no. 2, pp. 207–215, 2005. View at Publisher · View at Google Scholar
  15. A. Sabarudin, K. Oshita, M. Oshima, and S. Motomizu, “Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES,” Talanta, vol. 66, no. 1, pp. 136–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. K. Katarina, T. Takayanagi, M. Oshima, and S. Motomizu, “Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples,” Analytica Chimica Acta, vol. 558, no. 1-2, pp. 246–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. C. Justi, V. T. Favere, M. C. M. Laranjeria, A. Neves, and R. A. Peratla, “Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol,” Journal of Colloid and Interface Science, vol. 291, no. 2, pp. 369–374, 2005. View at Publisher · View at Google Scholar
  18. J. Kapusniak, W. Ciesielski, J. J. Koziol, and P. Tomasik, “Reaction of starch with α-amino acids,” European Food Research and Technology, vol. 209, no. 5, pp. 325–329, 1999. View at Publisher · View at Google Scholar
  19. U. C. Akir, H. Temel, S. Ilhan, and H. I. Ugras, “Spectroscopic and conductance studies of new transition metal complexes with a schiff base derived from 4-methoxybenzaldehyde and 1,2-bis(p-aminophenoxy)ethane,” Spectroscopy Letters, vol. 36, no. 5-6, pp. 429–440, 2003. View at Publisher · View at Google Scholar
  20. A. A. Ikotun, Y. Ojo, C. A. Obafemi, and G. O. Egharevba, “Synthesis and antibacterial activity of metal complexes of barbituric acid,” African Journal of Pure and Applied Chemistry, vol. 5, no. 5, pp. 97–103, 2011. View at Google Scholar
  21. T. Holopainen, L. Alvila, J. Rainio, and T. T. Pakkanen, “IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins,” Journal of Applied Polymer Science, vol. 69, no. 11, pp. 2175–2185, 1998. View at Google Scholar · View at Scopus
  22. M. O. Agwara, M. D. Yufanyi, J. N. Foba-Tendo, M. A. Atamba, and D. T. Ndinteh, “Synthesis, characterisation and biological activities of Mn(II), Co(II) and Ni(II) complexes of hexamethylenetetramine,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 3, pp. 196–204, 2011. View at Google Scholar · View at Scopus
  23. A. A. Al-Amiery, Y. K. Al-Majedy, H. Abdulreazak, and H. Abood, “Synthesis, characterization, theoretical crystal structure, and antibacterial activities of some transition metal complexes of the thiosemicarbazone (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide,” Bioinorganic Chemistry and Applications, vol. 2011, Article ID 483101, 6 pages, 2011. View at Publisher · View at Google Scholar
  24. G. G. Mohamed, M. M. Omar, and A. M. Hindy, “Metal complexes of Schiff bases: preparation, characterization, and biological activity,” Turkish Journal of Chemistry, vol. 30, no. 3, pp. 361–382, 2006. View at Google Scholar · View at Scopus
  25. G. Pritchard, “Plastic Additives,” in Plastics and the Environment, A. L. Andrady, Ed., pp. 432–435, London, UK, 1998. View at Google Scholar