Table of Contents
ISRN Chemical Engineering
Volume 2013, Article ID 565471, 11 pages
http://dx.doi.org/10.1155/2013/565471
Research Article

Gasification Coupled Chemical Looping Combustion of Coal: A Thermodynamic Process Design Study

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India

Received 28 October 2012; Accepted 18 November 2012

Academic Editors: V. Baglio, N. Kakuta, M.-H. Li, and K. Okumura

Copyright © 2013 Sonali A. Borkhade et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Shoko, B. McLellan, A. L. Dicks, and J. C. D. da Costa, “Hydrogen from coal: production and utilisation technologies,” International Journal of Coal Geology, vol. 65, no. 3-4, pp. 213–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Tsatsaronis, K. Kapanke, and A. M. B. Marigorta, “Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power,” Energy, vol. 33, no. 2, pp. 321–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hesenov, H. Kinik, G. Puli, B. Gözmen, S. Irmak, and O. Erbatur, “Electrolysis of coal slurries to produce hydrogen gas: relationship between CO2 and H2 formation,” International Journal of Hydrogen Energy, vol. 36, no. 9, pp. 5361–5368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Lin, M. Harada, Y. Suzuki, and H. Hatano, “Hydrogen production from coal by separating carbon dioxide during gasification,” Fuel, vol. 81, no. 16, pp. 2079–2085, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Abdollahi, J. Yu, K. T. L. Paul, R. Ciora, M. Sahimi, and T. T. Tsotsis, “Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process,” Journal of Membrane Science, vol. 363, no. 1-2, pp. 160–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Martinez, K. Gerdes, G. Randall, and J. Poston, “Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas,” Journal of Power Sources, vol. 195, no. 16, pp. 5206–5212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ghosh and S. De, “Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell,” Energy, vol. 31, no. 2-3, pp. 345–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. S. Christopher and M. Alejandro, “Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal,” Proceedings of the Combustion Institute, vol. 33, pp. 1723–1730, 2011. View at Google Scholar
  9. M. Hishida, M. Fumizawa, Y. Inaba et al., “Nuclear energy conversion systems for arresting global warming,” Energy Conversion and Management, vol. 38, no. 10–13, pp. 1365–1375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. Wmo Greenhouse Gas Bulletin, No 7, World Meterological Organization, 2011.
  11. A. Abad, T. Mattisson, A. Lyngfelt, and M. Rydén, “Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier,” Fuel, vol. 85, no. 9, pp. 1174–1185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Jin and M. Ishida, “A new type of coal gas fueled chemical-looping combustion,” Fuel, vol. 83, no. 17-18, pp. 2411–2417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Lyngfelt, B. Leckner, and T. Mattisson, “A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion,” Chemical Engineering Science, vol. 56, no. 10, pp. 3101–3113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Dennis, C. R. Müller, and S. A. Scott, “In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: performance with bituminous coals,” Fuel, vol. 89, no. 9, pp. 2353–2364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Hossain and H. I. de Lasa, “Chemical-looping combustion (CLC) for inherent CO2 separations-a review,” Chemical Engineering Science, vol. 63, no. 18, pp. 4433–4451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Cao and W. P. Pan, “Investigation of chemical looping combustion by solid fuels. 1. Process analysis,” Energy and Fuels, vol. 20, no. 5, pp. 1836–1844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Mattisson, A. Lyngfelt, and H. Leion, “Chemical-looping with oxygen uncoupling for combustion of solid fuels,” International Journal of Greenhouse Gas Control, vol. 3, no. 1, pp. 11–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Xiang, S. Wang, and T. Di, “Investigation of gasification chemical looping combustion combined cycle performance,” Energy and Fuels, vol. 22, no. 2, pp. 961–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Zheng, L. Shen, and J. Xiao, “Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion: effects of temperature and gasification intermediate,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 716–728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Shen, J. Wu, and J. Xiao, “Experiments on chemical looping combustion of coal with a NiO based oxygen carrier,” Combustion and Flame, vol. 156, no. 3, pp. 721–728, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Wang, B. Jin, W. Zhong, Y. Zhang, and M. Song, “Three-dimensional simulation of a coal gas fueled chemical looping combustion process,” International Journal of Greenhouse Gas Control, vol. 3, pp. 1750–5836, 2011. View at Google Scholar
  22. J. Corella, J. M. Toledo, and G. Molina, “Steam gasification of coal at low-medium (600-800°C) temperature with simultaneous CO2 capture in a bubbling fluidized bed at atmospheric pressure. 2. Results and recommendations for scaling up,” Industrial and Engineering Chemistry Research, vol. 47, no. 6, pp. 1798–1811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Matsunami, S. Yoshida, Y. Oku, O. Yokota, Y. Tamaura, and M. Kitamura, “Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization,” Solar Energy, vol. 68, no. 3, pp. 257–261, 2000. View at Google Scholar · View at Scopus
  24. M. F. Irfan, M. R. Usman, and K. Kusakabe, “Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review,” Energy, vol. 36, no. 1, pp. 12–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. P. Ye, J. B. Agnew, and D. K. Zhang, “Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies,” Fuel, vol. 77, no. 11, pp. 1209–1219, 1998. View at Google Scholar · View at Scopus
  26. A. Molina and F. Mondragón, “Reactivity of coal gasification with steam and CO2,” Fuel, vol. 77, no. 15, pp. 1831–1839, 1998. View at Google Scholar · View at Scopus
  27. C. Nenad, R. Branislav, M. Rastko, N. Olivera, and V. Miomir, “Experimental investigation of role of steam in entrained flow coal gasification,” Fuel, vol. 86, no. 1-2, pp. 194–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Abad, F. G. Labiano, L. F. de Diego, P. Gayán, and J. Adánez, “Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion,” Energy and Fuels, vol. 21, no. 4, pp. 1843–1853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Mattisson, F. G. Labiano, B. Kronberger, A. Lyngfelt, J. Adánez, and H. Hofbauer, “Chemical-looping combustion using syngas as fuel,” International Journal of Greenhouse Gas Control, vol. 1, no. 2, pp. 158–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. P. Singh, S. A. Weil, and S. P. Babu, “Thermodynamic analysis of coal gasification processes,” Energy, vol. 5, no. 8-9, pp. 905–914, 1979. View at Google Scholar · View at Scopus
  31. M. Gassner and F. Maréchal, “Thermodynamic comparison of the FICFB and Viking gasification concepts,” Energy, vol. 34, no. 10, pp. 1744–1753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Wang, J. Zhou, Q. Wang, J. Fan, and K. Cen, “Thermodynamic equilibrium analysis of hydrogen production by coal based on Coal/CaO/H2O gasification system,” International Journal of Hydrogen Energy, vol. 31, no. 7, pp. 945–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Díaz-Somoano and M. R. Martínez-Tarazona, “Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach,” Fuel, vol. 82, no. 2, pp. 137–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Dufaux, B. Gaveau, R. Létolle, M. Mostade, M. Noël, and J. P. Pirard, “Modelling of the underground coal gasification process at Thulin on the basis of thermodynamic equilibria and isotopic measurements,” Fuel, vol. 69, no. 5, pp. 624–632, 1990. View at Google Scholar · View at Scopus
  35. X. Li, J. R. Grace, A. P. Watkinson, C. J. Lim, and A. Ergüdenler, “Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier,” Fuel, vol. 80, no. 2, pp. 195–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Melgar, J. F. Pérez, H. Laget, and A. Horillo, “Thermochemical equilibrium modelling of a gasifying process,” Energy Conversion and Management, vol. 48, no. 1, pp. 59–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Cao and W. P. Pan, “Investigation of chemical looping combustion by solid fuels. 1. Process analysis,” Energy and Fuels, vol. 20, no. 5, pp. 1836–1844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. P. E. Cleeton, C. D. Bohn, C. R. Müller, J. S. Dennis, and S. A. Scott, “Clean hydrogen production and electricity from coal via chemical looping: identifying a suitable operating regime,” International Journal of Hydrogen Energy, vol. 34, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. P. Gao, L. Shen, J. Xiao, C. Qing, and Q. Song, “Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier,” Industrial & Engineering Chemistry Research, vol. 47, pp. 9279–9287, 2008. View at Google Scholar
  40. HSC Chemistry [software], Version 5. 1. Pori, Outokumpu Research Oy, 2002.
  41. W. R. Smith, “Computer software reviews,” Journal of Chemical Information and Computer Sciences, vol. 36, no. 1, pp. 151–152, 1996, HSC Chemistry for Windows, 2. View at Google Scholar
  42. R. H. Perry and D. W. Green, Chemical Engineers'Handbook, McGraw-Hill, 7th edition, 1997.