Table of Contents
ISRN Toxicology
Volume 2013, Article ID 574648, 11 pages
http://dx.doi.org/10.1155/2013/574648
Review Article

Ecotoxicity of Nanoparticles

1Department of Biotechnology, Vels University, P. V. Vaithiyalingam Road, Velan Nagar, Pallavaram, Tamil Nadu 600117, India
2Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Tamil Nadu 600026, India

Received 7 February 2013; Accepted 26 February 2013

Academic Editors: S. C. Bondy, S. K. Brar, J. V. Rogers, and B. Zhou

Copyright © 2013 Sachindri Rana and P. T. Kalaichelvan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ostiguy, G. Lapointe, L. Ménard et al., “Les effets à la santé reliés aux nanoparticules,” Rapport R-451, Montréal, Canada, 2006. View at Google Scholar
  2. E. J. Joner, T. Hartnik, and C. E. Amundsen, “Environmental fate and ecotoxicity of engineered nanoparticles,” in Norwegian Pollution Control Authority Report no. TA 2304/2007, pp. 1–64, Bioforsk, Ås, Norway, 2008. View at Google Scholar
  3. I. N. Throbäck, M. Johansson, M. Rosenquist, M. Pell, M. Hansson, and S. Hallin, “Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil,” FEMS Microbiology Letters, vol. 270, no. 2, pp. 189–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Bhushan, Handbook of Nanotechnology, Springer, Berlin, Germany, 2nd edition, 2007.
  5. N. Lane, “Nanotechnologies meet market realities,” Chemical & Engineering News, article 17, 2002. View at Google Scholar
  6. G. H. Miley, “Nanotechnology,” in Kirk-Othmer Encyclopedia of Chemical Technology, pp. 1–29, 2005. View at Google Scholar
  7. G. Schmid, Nanoparticles: From Theory to Application, 2nd edition, 2010.
  8. G. Schmid, H. Brune, H. Ernst et al., Nanotechnology: Assessment and Perspectives, Gethmann Springer, Berlin, Germany, 2006.
  9. M. Bowker, “A prospective: surface science and catalysis at the nanoscale,” Surface Science, vol. 603, no. 16, pp. 2359–2362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. R. Houk, S. R. Challa, B. Grayson, P. Fanson, and A. K. Datye, “The definition of "critical radius" for a collection of nanoparticles undergoing Ostwald ripening,” Langmuir, vol. 25, no. 19, pp. 11225–11227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. G. Haverkamp, “A decade of nanoparticle research in Australia and New Zealand,” Particulate Science and Technology, vol. 28, no. 1, pp. 1–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotechnology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar
  13. G. Oberdörster, “Inhaled nano-sized particles: potential effects and Mechanisms,” in Compte-rendu du 1st International Symposium on Occupational Health Implications of Nanomaterials, Health and Safety Executive, Great-Britain and the National Institute for Occupational Safety and Health, Ed., pp. 65–71, Buxton, UK, October 2004.
  14. C. Ostiguy, G. Lapointe, L. Ménard et al., “Les nanoparticules: État des connaissances sur les risques en santé et sécurité du travail,” Rapport IRSST Soumis, IRSST, Montréal, Canada, 2006. View at Google Scholar
  15. A. Singhal, G. Skandan, A. Wang, N. Glumac, B. H. Kear, and R. D. Hunt, “On nanoparticle aggregation during vapor phase synthesis,” Nanostructured Materials, vol. 11, no. 4, pp. 545–552, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. A. Borm, “Toxicology of ultrafine particles. Rapport d’un atelier du BIA sur ultrafine aerosols at workplaces,” BIA Report, Berufsgenossenschaftliches Institut für Arbeitsschutz, 2003. View at Google Scholar
  17. B. Nowack and T. D. Bucheli, “Occurrence, behavior and effects of nanoparticles in the environment,” Environmental Pollution, vol. 150, no. 1, pp. 5–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. J. Gimbert, R. E. Hamon, P. S. Casey, and P. J. Worsfold, “Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation,” Environmental Chemistry, vol. 4, no. 1, pp. 8–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. A. D. Guzman, M. P. Finnegan, and J. F. Banfield, “Influence of surface potential on aggregation and transport of titania nanoparticles,” Environmental Science and Technology, vol. 40, no. 24, pp. 7688–7693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Brant, J. Labille, J. Y. Bottero, and M. R. Wiesner, “Nanoparticle transport, aggregation and deposition,” in Environmental Nanotechnology Applications and Impacts of Nanomaterials, M. R. Wiesner and J. Y. Bottero, Eds., pp. 231–294, McGraw Hill, New York, NY, USA, 2007. View at Google Scholar
  21. K. Fukushi and T. Sato, “Using a surface complexation model to predict the nature and stability of nanoparticles,” Environmental Science and Technology, vol. 39, no. 5, pp. 1250–1256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Brant, H. Lecoanet, and M. R. Wiesner, “Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems,” Journal of Nanoparticle Research, vol. 7, no. 4-5, pp. 545–553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Huuskonen, “Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure,” Journal of Chemical Information and Computer Sciences, vol. 43, no. 5, pp. 1457–1462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas, “Assessing the risks of manufactured nanomaterials,” Environmental Science and Technology, vol. 40, no. 14, pp. 4336–4345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Xu, C. R. H. Bahl, C. Frandsen, and S. Mørup, “Interparticle interactions in agglomerates of α-Fe2O3 nanoparticles: influence of grinding,” Journal of Colloid and Interface Science, vol. 279, no. 1, pp. 132–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Yang and D. J. Watts, “Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles,” Toxicology Letters, vol. 158, no. 2, pp. 122–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kovochich, T. Xia, J. Xu, J. I. Yeh, and A. E. Nel, “Principles and procedures to assess nanoparticles,” Environmental Science & Technology, vol. 39, no. 5, pp. 1250–1256, 2005. View at Publisher · View at Google Scholar
  28. C. M. Sayes, J. D. Fortner, W. Guo et al., “The differential cytotoxicity of water-soluble fullerenes,” Nano Letters, vol. 4, no. 10, pp. 1881–1887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Daroczi, G. Kari, M. F. McAleer, J. C. Wolf, U. Rodeck, and A. P. Dicker, “In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model,” Clinical Cancer Research, vol. 12, no. 23, pp. 7086–7091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Hoffmann, E. M. Holtze, and M. R. Wiesner, “Reactive oxygen species generation on nanoparticulate material,” in Environmental Nanotechnology. Applications and Impacts of Nanomaterials, M. R. Wiesner and J. Y. Bottero, Eds., pp. 155–203, McGraw Hill, New York, NY, USA, 2007. View at Google Scholar
  31. D. Y. Lyon, A. Thill, J. Rose, and P. J. J. Alvarez, “Ecotoxicological impacts of nanomaterials,” in Environmental Nanotechnology. Applications and Impacts of Nanomaterials, M. R. Wiesner and J. Y. Bottero, Eds., pp. 445–479, McGraw Hill, New York, NY, USA, 2007. View at Google Scholar
  32. L. C. Abbott and A. D. Maynard, “Exposure assessment approaches for engineered nanomaterials,” Risk Analysis, vol. 30, no. 11, pp. 1634–1644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. D. Maynard, “Nanotechnology: the next big thing, or much ado about nothing?” Annals of Occupational Hygiene, vol. 51, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Schulenburg, Nanoparticles—Small Things, Big Effects Opportunities and Risks, Federal Ministry of Education and Research, Berlin, Germany, 2008.
  35. G. Yuan, “Natural and modified nanomaterials as sorbents of environmental contaminants,” Journal of Environmental Science and Health A. Toxic Hazardous Substances and Environmental Engineering, vol. 39, no. 10, pp. 2661–2670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Y. Bottero, J. Rose, and M. R. Wiesner, “Nanotechnologies: tools for sustainability in a new wave of water treatment processes,” Integrated Environmental Assessment and Management, vol. 2, no. 4, pp. 391–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, John Wiley & Sons, New York, NY, USA, 2006.
  38. J. Macanás, P. Ruiz, A. Alonso, M. Muñoz, and D. N. Muraviev, “Ion-exchange assisted synthesis of polymer-stabilized metal nanoparticles,” in Solvent Extraction and Ion Exchange: A Series of Advances, vol. 20, Taylor & Francis, Boca Raton, Fla, USA, 2011. View at Google Scholar
  39. L. L. Vatta, R. D. Sanderson, and K. R. Koch, “Magnetic nanoparticles: properties and potential applications,” Pure and Applied Chemistry, vol. 78, no. 9, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. V. I. Belotelov, P. Perlo, and A. K. Zvezdin, “Magneto optics of granular materials and new optical methods of magnetic nanoparticles and nanostructures imaging,” in Metal-Polymer Nanocomposites, L. Nicolais and G. Carotenuto, Eds., vol. 8, pp. 201–240, John Wiley & Sons, New York, NY, USA, 2005. View at Google Scholar
  41. R. Qiao, X. L. Zhang, R. Qiu, Y. Li, and Y. S. Kang, “Fabrication of superparamagnetic cobalt nanoparticles-embedded block copolymer microcapsules,” Journal of Physical Chemistry C, vol. 111, no. 6, pp. 2426–2429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004. View at Google Scholar · View at Scopus
  43. J. D. Fortner, D. Y. Lyon, C. M. Sayes et al., “C60 in water: nanocrystal formation and microbial response,” Environmental Science and Technology, vol. 39, no. 11, pp. 4307–4316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. R. Badireddy, E. M. Hotze, S. Chellam, P. Alvarez, and M. R. Wiesner, “Inactivation of bacteriophages via photosensitization of fullerol nanoparticles,” Environmental Science and Technology, vol. 41, no. 18, pp. 6627–6632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. J. Tang, J. M. Ashcroft, D. Chen et al., “Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism,” Nano Letters, vol. 7, no. 3, pp. 754–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Zhu, L. Zhu, Y. Li, Z. Duan, W. Chen, and P. J. J. Alvarez, “Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol,” Environmental Toxicology and Chemistry, vol. 26, no. 5, pp. 976–979, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Cheng, E. Flahaut, and H. C. Shuk, “Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos,” Environmental Toxicology and Chemistry, vol. 26, no. 4, pp. 708–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. J. Smith, B. J. Shaw, and R. D. Handy, “Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects,” Aquatic Toxicology, vol. 82, no. 2, pp. 94–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. A. P. Roberts, A. S. Mount, B. Seda et al., “In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna,” Environmental Science and Technology, vol. 41, no. 8, pp. 3028–3029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Oberdörster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch, “Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms,” Carbon, vol. 44, no. 6, pp. 1112–1120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. N. R. Panyala, E. M. Peña-Méndez, and J. Havel, “Silver or silver nanoparticles: a hazardous threat to the environment and human health?” Journal of Applied Biomedicine, vol. 6, no. 3, pp. 117–129, 2008. View at Google Scholar · View at Scopus
  52. S. Rana and P. T. Kalaichelvan, “Antibacterial effects of metal nanoparticles,” Advanced Biotech, vol. 2, no. 2, pp. 21–23, 2011. View at Google Scholar
  53. R. J. Griffitt, R. Weil, K. A. Hyndman et al., “Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio),” Environmental Science and Technology, vol. 41, no. 23, pp. 8178–8186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Cioffi, N. Ditaranto, L. Torsi et al., “Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films,” Analytical and Bioanalytical Chemistry, vol. 382, no. 8, pp. 1912–1918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Cioffi, L. Torsi, N. Ditaranto et al., “Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties,” Chemistry of Materials, vol. 17, no. 21, pp. 5255–5262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicological Sciences, vol. 88, no. 2, pp. 412–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. M. Hussain, A. K. Javorina, A. M. Schrand, H. M. H. M. Duhart, S. F. Ali, and J. J. Schlager, “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion,” Toxicological Sciences, vol. 92, no. 2, pp. 456–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, “In vitro toxicity of nanoparticles in BRL 3A rat liver cells,” Toxicology in Vitro, vol. 19, no. 7, pp. 975–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Chen and H. J. Schluesener, “Nanosilver: a nanoproduct in medical application,” Toxicology Letters, vol. 176, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Hogstrand and C. M. Wood, “The toxicity of silver to marine fish,” in Proceedings of The 4th International Conference on Transport, Fate and Effects of Silver in the Environment, A. W. Andren and T. W. Bober, Eds., pp. 109–112, Madison, Wis, USA, 1996.
  62. R. Eisler, “A review of silver hazards to plants and animals,” in Proceedings of the 4th International Conference on Transport Fate and Effects of Silver in the Environment, A. W. Andren and T. W. Bober, Eds., pp. 143–144, Madison, Wis, USA, 1996.
  63. L. J. Albright and E. M. Wilson, “Sub lethal effects of several metallic salts—organic compounds combinations upon the heterotrophic microflora of a natural water,” Water Research, vol. 8, no. 2, pp. 101–105, 1974. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Fu, A. Ji, D. Fan, and J. Shen, “Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex,” Journal of Biomedical Materials Research A, vol. 79, no. 3, pp. 665–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. H. Jeong, Y. H. Hwang, and S. C. Yi, “Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids,” Journal of Materials Science, vol. 40, no. 20, pp. 5413–5418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Elechiguerra, J. L. Burt, J. R. Morones et al., “Interaction of silver nanoparticles with HIV-1,” Journal of Nanobiotechnology, vol. 3, article 6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Baram-Pinto, S. Shukla, A. Gedanken, and R. Sarid, “Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles,” Small, vol. 6, no. 9, pp. 1044–1050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. V. Rogers, C. V. Parkinson, Y. W. Choi, J. L. Speshock, and S. M. Hussain, “A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation,” Nanoscale Research Letters, vol. 3, no. 4, pp. 129–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Papp, C. Sieben, K. Ludwig et al., “Inhibition of influenza virus infection by multivalent sialic-acid- functionalized gold nanoparticles,” Small, vol. 6, no. 24, pp. 2900–2906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Speshock, R. C. Murdock, L. K. Braydich-Stolle, A. M. Schrand, and S. M. Hussain, “Interaction of silver nanoparticles with Tacaribe virus,” Journal of Nanobiotechnology, vol. 8, pp. 19–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. M. Wood, R. C. Playle, and C. Hogstrand, “Physiology and modelling of mechanisms of silver uptake and toxicity in fish,” Environmental Toxicology and Chemistry, vol. 18, no. 1, pp. 71–83, 1999. View at Publisher · View at Google Scholar
  72. J. Kim and B. van der Bruggen, “The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment,” Environmental Pollution, vol. 158, no. 7, pp. 2335–2349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. B. A. Rozenberg and R. Tenne, “Polymer-assisted fabrication of nanoparticles and nanocomposites,” Progress in Polymer Science, vol. 33, no. 1, pp. 40–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. D. Pomogailo, “Polymer sol-gel synthesis of hybrid nanocomposites,” Colloid Journal, vol. 67, no. 6, pp. 658–677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Alonso, J. Macanás, G. L. Davies, and Y. K. Gun’ko, “Environmentally-safe polymer-metal nanocomposites with most favorable distribution of catalytically active and biocide nanoparticles,” in Advances in Nanocomposite Technology, pp. 176–200, Intech, Rijeka, Croatia, 2011. View at Google Scholar
  76. J. Theron, J. A. Walker, and T. E. Cloete, “Nanotechnology and water treatment: applications and emerging opportunities,” Critical Reviews in Microbiology, vol. 34, no. 1, pp. 43–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Xu and D. Bhattacharyya, “Membrane-based bimetallic nanoparticles for environmental remediation: synthesis and reactive properties,” Environmental Progress, vol. 24, no. 4, pp. 358–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Lapied, J. Y. Nahmani, E. Moudilou et al., “Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil,” Environment International, vol. 37, no. 6, pp. 1105–1110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. D. N. Muraviev, J. Macanás, M. Farre, M. Muñoz, and S. Alegret, “Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices,” Sensors and Actuators B: Chemical, vol. 118, no. 1-2, pp. 408–417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Savage and M. S. Diallo, “Nanomaterials and water purification: opportunities and challenges,” Journal of Nanoparticle Research, vol. 7, no. 4-5, pp. 331–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. L. K. Adams, D. Y. Lyon, and P. J. J. Alvarez, “Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions,” Water Research, vol. 40, no. 19, pp. 3527–3532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie—International Edition, vol. 46, no. 8, pp. 1222–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Laurent, D. Forge, M. Port et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008. View at Publisher · View at Google Scholar
  84. G. V. Medyak, A. A. Shunkevich, A. P. Polikarpov, and V. S. Soldatov, “Features of preparation and properties of FIBAN K-4 fibrous sorbents,” Russian Journal of Applied Chemistry, vol. 74, no. 10, pp. 1658–1663, 2001. View at Google Scholar · View at Scopus
  85. D. Lin and B. Xing, “Phytotoxicity of nanoparticles: inhibition of seed germination and root growth,” Environmental Pollution, vol. 150, no. 2, pp. 243–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Hardman, “A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environmental Health Perspectives, vol. 114, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Duncan and L. Izzo, “Dendrimer biocompatibility and toxicity,” Advanced Drug Delivery Reviews, vol. 57, no. 15, pp. 2215–2237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. T. Chen, M. F. Neerman, A. R. Parrish, and E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” Journal of the American Chemical Society, vol. 126, no. 32, pp. 10044–10048, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Rittner, A. Benavente, A. Bompard-Sorlet et al., “New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo,” Molecular Therapy, vol. 5, no. 2, pp. 104–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, “A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks,” Critical Reviews in Toxicology, vol. 36, no. 3, pp. 189–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Smita, S. K. Gupta, A. Bartonova, M. Dusinska, A. C. Gutleb, and Q. Rahman, “Nanoparticles in the environment: assessment using the causal diagram approach,” Environmental Health, vol. 11, pp. 1–13, 2012. View at Publisher · View at Google Scholar
  92. R. H. Hurt, M. Monthioux, and A. Kane, “Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue,” Carbon, vol. 44, no. 6, pp. 1028–1033, 2006. View at Publisher · View at Google Scholar · View at Scopus