Table of Contents
ISRN Applied Mathematics
Volume 2013, Article ID 580561, 13 pages
http://dx.doi.org/10.1155/2013/580561
Research Article

Weakly Nonlinear and Numerical Analysis of Auto-Oscillatory Dynamics in a Solid Propellant Combustion Model

Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, Burlington, VT 05405, USA

Received 19 March 2013; Accepted 9 April 2013

Academic Editors: I. Doltsinis, J. R. Fernandez, J. Shen, and H. C. So

Copyright © 2013 Michael Reardon and Jun Yu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. Shkadinsky, B. I. Khaikin, and A. G. Merzhanov, “Propagation of a pulsating exothermic reaction in the condensed phase,” Combustion, Explosion, and Shock Waves, vol. 7, pp. 15–22, 1971. View at Google Scholar
  2. A. G. Merzhanov, A. K. Filonenko, and I. P. Borovinskaia, “New phenomena during the burning of condensed systems,” Doklady Physical Chemistry, vol. 208, pp. 122–125, 1973. View at Google Scholar
  3. B. V. Novozhilov, “Nonlinear SHS phenomena: experiment, theory, numerical modeling,” Pure and Applied Chemistry, vol. 64, no. 7, pp. 955–964, 1992. View at Publisher · View at Google Scholar
  4. J. Yu and L. K. Gross, “The onset of linear instabilities in a solid combustion model,” Studies in Applied Mathematics, vol. 107, no. 1, pp. 81–101, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. M. Frankel, L. K. Gross, and V. Roytburd, “Thermo-kinetically controlled pattern selection,” Interfaces and Free Boundaries, vol. 2, no. 3, pp. 313–330, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. S. B. Margolis and B. J. Matkowsky, “Flame propagation in channels: secondary bifurcation to quasiperiodic pulsations,” SIAM Journal on Applied Mathematics, vol. 45, no. 1, pp. 93–129, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  7. A. Bayliss, B. J. Matkowsky, and A. P. Aldushin, “Dynamics of hot spots in solid fuel combustion,” Physica D, vol. 166, no. 1-2, pp. 104–130, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. S. B. Margolis, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky, “Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion,” Combustion Science and Technology, vol. 43, no. 3-4, pp. 127–165, 1985. View at Publisher · View at Google Scholar
  9. A. Volpert, A. Volpert, S. P. Davtyan, I. N. Megrabova, and N. F. Surkov, “Threedimensional modes of unsteady solid-ame combustion,” Chaos, vol. 13, no. 1, pp. 80–86, 2003. View at Publisher · View at Google Scholar
  10. A. Bayliss, B. J. Matkowsky, and M. Minkoff, “Period doubling gained, period doubling lost,” SIAM Journal on Applied Mathematics, vol. 49, no. 4, pp. 1047–1063, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. A. Bayliss and B. J. Matkowsky, “Fronts, relaxation oscillations, and period doubling in solid fuel combustion,” Journal of Computational Physics, vol. 71, no. 1, pp. 147–168, 1987. View at Publisher · View at Google Scholar
  12. A. Bayliss and B. J. Matkowsky, “Two routes to chaos in condensed phase combustion,” SIAM Journal on Applied Mathematics, vol. 50, no. 2, pp. 437–459, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S. B. Margolis, “Chaotic combustion of solids and high-density uids near points of strong resonance,” Proceedings Mathematical and Physical Sciences, vol. 433, no. 1887, pp. 131–150, 1991. View at Publisher · View at Google Scholar
  14. I. Brailovsky and G. I. Sivashinsky, “Chaotic dynamics in solid fuel combustion,” Physica D, vol. 65, no. 1-2, pp. 191–198, 1993. View at Publisher · View at Google Scholar
  15. J. Yu, L. K. Gross, and C. M. Danforth, “Complex dynamic behavior during transition in a solid combustion model,” Complexity, vol. 14, no. 6, pp. 9–14, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  16. M. Frankel, V. Roytburd, and G. Sivashinsky, “A sequence of period doublings and chaotic pulsations in a free boundary problem modeling thermal instabilities,” SIAM Journal on Applied Mathematics, vol. 54, no. 4, pp. 1101–1112, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. S. B. Margolis, “New routes to quasiperiodic combustion of solids and high-density fluids near resonant Hopf bifurcation points,” SIAM Journal on Applied Mathematics, vol. 51, no. 3, pp. 693–726, 1991. View at Publisher · View at Google Scholar · View at MathSciNet
  18. S. B. Margolis, “An asymptotic theory of condensed two-phase flame propagation,” SIAM Journal on Applied Mathematics, vol. 43, no. 2, pp. 351–369, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. B. V. Novozhilov, “Nonlinear oscillations of combustion velocity of powder,” Journal of Applied Mechanics and Technical Physics, vol. 7, no. 5, pp. 19–25, 1966. View at Google Scholar
  20. S. B. Margolis and R. C. Armstrong, “Two asymptotic models for solid propellant combustion,” Combustion Science and Technology, vol. 47, no. 1-2, pp. 1–18, 1986. View at Publisher · View at Google Scholar
  21. M. Garbey, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky, “Quasi-periodic waves and the transfer of stability in condensed-phase surface combustion,” SIAM Journal on Applied Mathematics, vol. 52, no. 2, pp. 384–395, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. L. K. Gross and J. Yu, “Weakly nonlinear and numerical analyses of dynamics in a solid combustion model,” SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1708–1725, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. M. R. Booty, S. B. Margolis, and B. J. Matkowsky, “Interaction of pulsating and spinning waves in condensed phase combustion,” SIAM Journal on Applied Mathematics, vol. 46, no. 5, pp. 801–843, 1986. View at Publisher · View at Google Scholar · View at MathSciNet
  24. M. S. Reardon, Weakly Nonlinear Analysis of a Solid Propellant Combustion Model [Ph.D. thesis], University of Vermont, Burlington, Vt, USA, 2012.