Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 583786, 16 pages
http://dx.doi.org/10.1155/2013/583786
Review Article

Diabetes and Risk of Cancer

1Department of Geriatric, Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
2Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
3Faculty of Medicine, Ludwik Rydygier Collegium Medicum at Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland

Received 24 December 2012; Accepted 9 January 2013

Academic Editors: Y. Akiyama and G. Metro

Copyright © 2013 Samy L. Habib and Maciej Rojna. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Giovannucci, D. M. Harlan, M. C. Archer et al., “Diabetes and cancer: a consensus report,” CA Cancer Journal for Clinicians, vol. 60, no. 4, pp. 207–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Centers for Disease Control and Prevention (CDC), “Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988–1994 and 1999–2002,” Morbidity and Mortality Weekly Report, vol. 53, no. 45, pp. 1066–1068, 2004. View at Google Scholar
  3. E. E. Calle and M. J. Thun, “Obesity and cancer,” Oncogene, vol. 23, no. 38, pp. 6365–6378, 2004. View at Google Scholar
  4. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Google Scholar
  5. T. Kulie, A. Slattengren, J. Redmer, H. Counts, A. Eglash, and S. Schrager, “Obesity and women's health: an evidence-based review,” Journal of the American Board of Family Medicine, vol. 24, no. 1, pp. 75–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Eliassen, G. A. Colditz, B. Rosner, W. C. Willett, and S. E. Hankinson, “Adult weight change and risk of postmenopausal breast cancer,” The Journal of the American Medical Association, vol. 296, no. 2, pp. 193–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. La Vecchia, S. H. Giordano, G. N. Hortobagyi, and B. Chabner, “Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle,” Oncologist, vol. 16, no. 6, pp. 726–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Leroith, R. Novosyadlyy, E. J. Gallagher et al., “Obesity and Type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence,” Experimental and Clinical Endocrinology & Diabetes, vol. 116, supplement 1, pp. S4–S6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ma, H. Li, E. Giovannucci et al., “Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis,” The Lancet Oncology, vol. 9, no. 11, pp. 1039–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Schienkiewitz, M. B. Schulze, K. Hoffmann, A. Kroke, and H. Boeing, “Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 427–433, 2006. View at Google Scholar · View at Scopus
  11. M. A. Abdul-Ghani, M. Sabbah, B. Muati et al., “High frequency of pre-diabetes, undiagnosed diabetes and metabolic syndrome among overweight Arabs in Israel,” Israel Medical Association Journal, vol. 7, no. 3, pp. 143–147, 2005. View at Google Scholar · View at Scopus
  12. M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Krishnan, L. Rosenberg, M. Singer et al., “Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women,” Archives of Internal Medicine, vol. 167, no. 21, pp. 2304–2309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. W. Barclay, P. Petocz, J. McMillan-Price et al., “Glycemic index, glycemic load, and chronic disease risk—a metaanalysis of observational studies,” The American Journal of Clinical Nutrition, vol. 87, no. 3, pp. 627–637, 2008. View at Google Scholar · View at Scopus
  15. J.-Y. Dong and L.-Q. Qin, “Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies,” Breast Cancer Research and Treatment, vol. 126, no. 2, pp. 287–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hu, C. La Vecchia, L. S. Augustin et al., “Glycemic index, glycemic load and cancer risk,” Annals of Oncology, vol. 24, no. 1, pp. 245–251, 2013. View at Google Scholar
  17. P. Gnagnarella, S. Gandini, C. La Vecchia, and P. Maisonneuve, “Glycemic index, glycemic load, and cancer risk: a meta-analysis,” The American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1793–1801, 2008. View at Google Scholar · View at Scopus
  18. C.-M. Kastorini and D. B. Panagiotakos, “Dietary patterns and prevention of type 2 diabetes: from research to clinical practice; a systematic review,” Current Diabetes Reviews, vol. 5, no. 4, pp. 221–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. H. Kushi, T. Byers, C. Doyle et al., “American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity,” CA: A Cancer Journal for Clinicians, vol. 56, no. 5, pp. 254–281, 2006. View at Google Scholar
  20. C. La Vecchia, “Mediterranean diet and cancer,” Public Health Nutrition, vol. 7, no. 7, pp. 965–968, 2004. View at Google Scholar
  21. R. Doll, “The lessons of life: keynote address to the nutrition and cancer conference,” Cancer Research, vol. 52, no. 7, supplement, pp. 2024s–2029s, 1992. View at Google Scholar
  22. T. Stocks, K. Rapp, T. Bjørge et al., “Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (Me-Can): analysis of six prospective cohorts,” PLoS Medicine, vol. 6, no. 12, Article ID 1000201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Jee, H. Ohrr, J. W. Sull, J. E. Yun, M. Ji, and J. M. Samet, “Fasting serum glucose level and cancer risk in Korean men and women,” The Journal of the American Medical Association, vol. 293, no. 2, pp. 194–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Liu, J. Stamler, R. Stamler et al., “Methodological problems in characterizing an individual’s plasma glucose level,” Journal of Chronic Diseases, vol. 35, no. 6, pp. 475–485, 1982. View at Google Scholar
  25. R. Clarke, M. Shipley, S. Lewington et al., “Underestimation of risk associations due to regression dilution in long- term follow-up of prospective studies,” American Journal of Epidemiology, vol. 150, no. 4, pp. 341–353, 1999. View at Google Scholar · View at Scopus
  26. H. F. Bunn, K. H. Gabbay, and P. M. Gallop, “The glycosylation of hemoglobin: relevance to diabetes mellitus,” Science, vol. 200, no. 4337, pp. 21–27, 1978. View at Google Scholar · View at Scopus
  27. “Executive summary: standards of medical care in diabetes—2010,” Diabetes Care, vol. 33, supplement 1, pp. S4–S10, 2010.
  28. N. Travier, M. Jeffreys, N. Brewer et al., “Association between glycosylated hemoglobin and cancer risk: a New Zealand linkage study,” Annals of Oncology, vol. 18, no. 8, pp. 1414–1419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. E. Joshu, A. E. Prizment, P. J. Dluzniewski et al., “Glycated hemoglobin and cancer incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 1990–2006,” International Journal of Cancer, vol. 131, no. 7, pp. 1667–1677, 2012. View at Google Scholar
  30. X. Yang, G. T. C. Ko, W. Y. So et al., “Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry,” Diabetes, vol. 59, no. 5, pp. 1254–1260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Miao Jonasson, J. Cederholm, B. Eliasson, B. Zethelius, K. Eeg-Olofsson, and S. Gudbjörnsdottir, “HbA1C and cancer risk in patients with type 2 diabetes—a nationwide population-based prospective cohort study in Sweden,” PloS One, vol. 7, no. 6, Article ID e38784, 2012. View at Google Scholar
  32. K.-T. Khaw, N. Wareham, S. Bingham, R. Luben, A. Welch, and N. Day, “Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European Prospective Investigation into Cancer-Norfolk Study,” Cancer Epidemiology Biomarkers & Prevention, vol. 13, no. 6, pp. 915–919, 2004. View at Google Scholar · View at Scopus
  33. S. H. Saydah, E. A. Platz, N. Rifai, M. N. Pollak, F. L. Brancati, and K. J. Helzlsouer, “Association of markers of insulin and glucose control with subsequent colorectal cancer risk,” Cancer Epidemiology Biomarkers & Prevention, vol. 12, no. 5, pp. 412–418, 2003. View at Google Scholar · View at Scopus
  34. B. J. Kim, Y.-H. Kim, D. H. Sinn et al., “Clinical usefulness of glycosylated hemoglobin as a predictor of adenomatous polyps in the colorectum of middle-aged males,” Cancer Causes & Control, vol. 21, no. 6, pp. 939–944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Donadon, M. Balbi, F. Valent, and A. Avogaro, “Glycated hemoglobin and antidiabetic strategies as risk factors for hepatocellular carcinoma,” World Journal of Gastroenterology, vol. 16, no. 24, pp. 3025–3032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. V. A. Grote, S. Rohrmann, A. Nieters et al., “Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,” Diabetologia, vol. 54, no. 12, pp. 3037–3046, 2011. View at Google Scholar
  37. G. Misciagna, G. De Michele, V. Guerra, A. M. Cisternino, A. Di Leo, and J. L. Freudenheim, “Serum fructosamine and colorectal adenomas,” European Journal of Epidemiology, vol. 19, no. 5, pp. 425–432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Noto, T. Tsujimoto, T. Sasazuki, and M. Noda, “Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis,” Endocrine Practice, vol. 17, no. 4, pp. 616–628, 2011. View at Google Scholar
  39. H. Noto, K. Osame, T. Sasazuki, and M. Noda, “Substantially increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis of epidemiologic evidence in Japan,” Journal of Diabetes and Its Complications, vol. 24, no. 5, pp. 345–353, 2010. View at Google Scholar
  40. H.-C. Yeh, E. A. Platz, N.-Y. Wang, K. Visvanathan, K. J. Helzlsouer, and F. L. Brancati, “A prospective study of the associations between treated diabetes and cancer outcomes,” Diabetes Care, vol. 35, no. 1, pp. 113–118, 2012. View at Google Scholar
  41. M.-Y. Lee, K.-D. Lin, P.-J. Hsiao, and S.-J. Shin, “The association of diabetes mellitus with liver, colon, lung, and prostate cancer is independent of hypertension, hyperlipidemia, and gout in Taiwanese patients,” Metabolism, vol. 61, no. 2, pp. 242–249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-F. Lo, S.-N. Chang, C.-H. Muo et al., “Modest increase in risk of specific types of cancer types in type 2 diabetes mellitus patients,” International Journal of Cancer, vol. 2, no. 1, pp. 182–188, 2013. View at Google Scholar
  43. H.-W. Hense, H. Kajuter, J. Wellmann, and W. U. Batzler, “Cancer incidence in type 2 diabetes patients—first results from a feasibility study of the D2C cohort,” Diabetology & Metabolic Syndrome, vol. 3, article 15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Geraldine, A. Marc, T. Carla et al., “Relation between diabetes, metformin treatment and the occurrence of malignancies in a Belgian primary care setting,” Diabetes Research and Clinical Practice, vol. 97, no. 2, pp. 331–336, 2012. View at Google Scholar
  45. P.-H. Zhang, Z.-W. Chen, D. Lv et al., “Increased risk of cancer in patients with type 2 diabetes mellitus: a retrospective cohort study in China,” BMC Public Health, vol. 12, article 567, 2012. View at Google Scholar
  46. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Wang, X. Wang, G. Gong et al., “Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies,” International Journal of Cancer, vol. 130, no. 7, pp. 1639–1648, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. C.-J. Weng, Y.-H. Hsieh, C.-M. Tsai et al., “Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma,” Annals of Surgical Oncology, vol. 17, no. 7, pp. 1808–1815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. K. Wiencke, “Impact of race/ethnicity on molecular pathways in human cancer,” Nature Reviews Cancer, vol. 4, no. 1, pp. 79–84, 2004. View at Google Scholar · View at Scopus
  50. P. Vigneri, F. Frasca, L. Sciacca, G. Pandini, and R. Vigneri, “Diabetes and cancer,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1103–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. H. Mehta, F. L. Brancati, M. S. Sulkowski, S. A. Strathdee, M. Szklo, and D. L. Thomas, “Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States,” Annals of Internal Medicine, vol. 133, no. 8, pp. 592–599, 2000. View at Google Scholar · View at Scopus
  52. Y. Shintani, H. Fujie, H. Miyoshi et al., “Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance,” Gastroenterology, vol. 126, no. 3, pp. 840–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Miyamoto, K. Moriishi, K. Moriya et al., “Involvement of the PA28γ-dependent pathway in insulin resistance induced by hepatitis C virus core protein,” Journal of Virology, vol. 81, no. 4, pp. 1727–1735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Sasaki and J. R. Wands, “Ethanol impairs insulin receptor substrate-1 mediated signal transduction during rat liver regeneration,” Biochemical and Biophysical Research Communications, vol. 199, no. 1, pp. 403–409, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. J. He, S. de la Monte, and J. R. Wands, “Acute ethanol exposure inhibits insulin signaling in the liver,” Hepatology, vol. 46, no. 6, pp. 1791–1800, 2007. View at Google Scholar
  56. C. D. Williams, J. Stengel, M. I. Asike et al., “Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study,” Gastroenterology, vol. 140, no. 1, pp. 124–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Vernon, A. Baranova, and Z. M. Younossi, “Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults,” Alimentary Pharmacology & Therapeutics, vol. 34, no. 3, pp. 274–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Marrero, R. J. Fontana, G. L. Su, H. S. Conjeevaram, D. M. Emick, and A. S. Lok, “NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States,” Hepatology, vol. 36, no. 6, pp. 1349–1354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Angulo, “Nonalcoholic fatty liver disease,” Revista De Gastroenterología De México, vol. 70, supplement 3, pp. 52–56, 2005. View at Google Scholar
  60. A. Duseja, M. Nanda, A. Das, R. Das, A. Bhansali, and Y. Chawla, “Prevalence of obesity, diabetes mellitus and hyperlipidaemia in patients with cryptogenic liver cirrhosis,” Tropical Gastroenterology, vol. 25, no. 1, pp. 15–17, 2004. View at Google Scholar · View at Scopus
  61. G. Baffy, E. M. Brunt, and S. H. Caldwell, “Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace,” Journal of Hepatology, vol. 56, no. 6, pp. 1384–1391, 2012. View at Google Scholar
  62. Y. Takuma and K. Nouso, “Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review,” World Journal of Gastroenterology, vol. 16, no. 12, pp. 1436–1441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Ertle, A. Dechêne, J.-P. Sowa et al., “Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis,” International Journal of Cancer, vol. 128, no. 10, pp. 2436–2443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Q. Ben, M. Xu, X. Ning et al., “Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies,” European Journal of Cancer, vol. 47, no. 13, pp. 1928–1937, 2011. View at Google Scholar
  65. S. T. Chari, C. L. Leibson, K. G. Rabe et al., “Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer,” Gastroenterology, vol. 134, no. 1, pp. 95–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Pannala, C. L. Leibson, K. G. Rabe et al., “Temporal association of changes in fasting blood glucose and body mass index with diagnosis of pancreatic cancer,” American Journal of Gastroenterology, vol. 104, no. 9, pp. 2318–2325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Pannala, J. B. Leirness, W. R. Bamlet, A. Basu, G. M. Petersen, and S. T. Chari, “Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus,” Gastroenterology, vol. 134, no. 4, pp. 981–987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Permert, I. Ihse, L. Jorfeldt, H. von Schenck, H. J. Arnquist, and J. Larsson, “Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer,” The British Journal of Surgery, vol. 80, no. 8, pp. 1047–1050, 1993. View at Google Scholar · View at Scopus
  69. P. Fogar, C. Pasquali, D. Basso et al., “Diabetes mellitus in pancreatic cancer follow-up,” Anticancer Research, vol. 14, no. 6, pp. 2827–2830, 1994. View at Google Scholar · View at Scopus
  70. D. Basso, A. Valerio, R. Seraglia et al., “Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide,” Pancreas, vol. 24, no. 1, pp. 8–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. J. H. Lee, S.-A. Kim, H. Y. Park et al., “New-onset diabetes patients need pancreatic cancer screening?” Journal of Clinical Gastroenterology, vol. 46, no. 7, pp. 58–61, 2012. View at Google Scholar
  72. Y. Cui and D. K. Andersen, “Diabetes and pancreatic cancer,” Endocrine-Related Cancer, vol. 19, no. 5, pp. F9–F26, 2012. View at Google Scholar
  73. S. Kolb, R. Fritsch, D. Saur, M. Reichert, R. M. Schmid, and G. Schneider, “HMGA1 controls transcription of insulin receptor to regulate cyclin D1 translation in pancreatic cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4679–4686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Kornmann, H. Maruyama, U. Bergmann et al., “Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer,” Cancer Research, vol. 58, no. 19, pp. 4250–4254, 1998. View at Google Scholar · View at Scopus
  75. A. E. Butler, R. Galasso, A. Matveyenko, R. A. Rizza, S. Dry, and P. C. Butler, “Pancreatic duct replication is increased with obesity and type 2 diabetes in humans,” Diabetologia, vol. 53, no. 1, pp. 21–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Z. Stolzenberg-Solomon, B. I. Graubard, S. Chari et al., “Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers,” The Journal of the American Medical Association, vol. 294, no. 22, pp. 2872–2878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Deng, Z. Gui, L. Zhao, J. Wang, and L. Shen, “Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis,” Digestive Diseases and Sciences, vol. 57, no. 6, pp. 1576–1585, 2012. View at Google Scholar
  78. R. E. Schoen, J. L. Weissfeld, L. H. Kuller et al., “Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps,” Gastroenterology, vol. 129, no. 2, pp. 464–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Eddi, A. Karki, A. Shah, V. A. DeBari, and J. R. DePasquale, “Association of type 2 diabetes and colon adenomas,” Journal of Gastrointestinal Cancer, vol. 43, no. 1, pp. 87–92, 2012. View at Google Scholar
  80. A. A. Siddiqui, H. Maddur, S. Naik, and B. Cryer, “The association of elevated HbA1c on the behavior of adenomatous polyps in patients with type-II diabetes mellitus,” Digestive Diseases and Sciences, vol. 53, no. 4, pp. 1042–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. C. Larsson, N. Orsini, and A. Wolk, “Diabetes mellitus and risk of colorectal cancer: a meta-analysis,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1679–1687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. P. R. Debruyne, E. A. Bruyneel, X. Li, A. Zimber, C. Gespach, and M. M. Mareel, “The role of bile acids in carcinogenesis,” Mutation Research, vol. 480-481, pp. 359–369, 2001. View at Google Scholar · View at Scopus
  83. K. Kajiura, T. Ohkusa, and I. Okayasu, “Relationship between fecal bile acids and the occurrence of colorectal neoplasia in experimental murine ulcerative colitis,” Digestion, vol. 59, no. 1, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Jing, G. Jin, X. Zhou et al., “Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis,” European Journal of Cancer Prevention, vol. 21, no. 1, pp. 24–31, 2012. View at Google Scholar
  85. S. B. Biddinger, J. T. Haas, B. B. Yu et al., “Hepatic insulin resistance directly promotes formation of cholesterol gallstones,” Nature Medicine, vol. 14, no. 7, pp. 778–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Huang, H. Ren, Q. Ben, Q. Cai, W. Zhu, and Z. Li, “Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies,” Cancer Causes & Control, vol. 23, no. 2, pp. 263–272, 2012. View at Google Scholar
  87. T. Kamiya, H. Adachi, M. Hirako et al., “Impaired gastric motility and its relationship to reflux symptoms in patients with nonerosive gastroesophageal reflux disease,” Journal of Gastroenterology, vol. 44, no. 3, pp. 183–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. S. C. Larsson and A. Wolk, “Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies,” Diabetologia, vol. 54, no. 5, pp. 1013–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Russo, “End stage and chronic kidney disease: associations with renal cancer,” Frontiers in Oncology, vol. 2, p. 28, 2012. View at Google Scholar
  90. G. Corrao, L. Scotti, V. Bagnardi, and R. Sega, “Hypertension, antihypertensive therapy and renal-cell cancer: a meta-analysis,” Current Drug Safety, vol. 2, no. 2, pp. 125–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. F. M. Shebl, J. L. Warren, P. W. Eggers, and E. A. Engels, “Cancer risk among elderly persons with end-stage renal disease: a population-based case-control study,” BMC Nephrology, vol. 13, article 65, 2012. View at Google Scholar
  92. R. Pyram, A. Kansara, M. A. Banerji, and L. Loney-Hutchinson, “Chronic kidney disease and diabetes,” Maturitas, vol. 71, no. 2, pp. 94–103, 2012. View at Google Scholar
  93. V. Bijol, G. P. Mendez, S. Hurwitz, H. G. Rennke, and V. Nosé, “Evaluation of the nonneoplastic pathology in tumor nephrectomy specimens: predicting the risk of progressive renal failure,” The American Journal of Surgical Pathology, vol. 30, no. 5, pp. 575–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. S. M. Bonsib and Y. Pei, “The non-neoplastic kidney in tumor nephrectomy specimens: what can it show and what is important?” Advances in Anatomic Pathology, vol. 17, no. 4, pp. 235–250, 2010. View at Google Scholar
  95. S. L. Habib, T. J. Prihoda, M. Luna, and S. A. Werner, “Diabetes and risk of renal cell carcinoma,” Journal of Cancer, vol. 3, pp. 42–48, 2012. View at Google Scholar
  96. S. C. Larsson, N. Orsini, K. Brismar, and A. Wolk, “Diabetes mellitus and risk of bladder cancer: a meta-analysis,” Diabetologia, vol. 49, no. 12, pp. 2819–2823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. G. Woolcott, G. Maskarinec, C. A. Haiman, B. E. Henderson, and L. N. Kolonel, “Diabetes and urothelial cancer risk: the Multiethnic Cohort study,” Cancer Epidemiology, vol. 35, no. 6, pp. 551–554, 2011. View at Google Scholar
  98. Y. Neuzillet, X. Tillou, R. Mathieu et al., “Renal cell carcinoma (RCC) in patients with end-stage renal disease exhibits many favourable clinical, pathologic, and outcome features compared with RCC in the general population,” European Urology, vol. 60, no. 2, pp. 366–373, 2011. View at Google Scholar
  99. P.-H. Hung, C.-H. Shen, H.-B. Tsai et al., “Urothelial carcinoma in patients with advanced kidney disease: a 12-year retrospective cohort survey,” American Journal of the Medical Sciences, vol. 342, no. 2, pp. 148–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. P.-H. Hung, C.-H. Shen, Y.-L. Chiu et al., “The aggressiveness of urinary tract urothelial carcinoma increases with the severity of chronic kidney disease,” The British Journal of Urology International, vol. 104, no. 10, pp. 1471–1474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. E. C. Hwang, Y. J. Kim, I. S. Hwang et al., “Impact of diabetes mellitus on recurrence and progression in patients with non-muscle invasive bladder carcinoma: a retrospective cohort study,” International Journal of Urology, vol. 18, no. 11, pp. 769–776, 2011. View at Google Scholar
  102. H. El-Mosalamy, T. M. Salman, A. M. Ashmawey, and N. Osama, “Role of chronic E. coli infection in the process of bladder cancer—an experimental study,” Infectious Agents and Cancer, vol. 7, article 19, 2012. View at Google Scholar
  103. S. Liao, J. Li, W. Wei et al., “Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 4, pp. 1061–1065, 2011. View at Google Scholar
  104. E. Friberg, N. Orsini, C. S. Mantzoros, and A. Wolk, “Diabetes mellitus and risk of endometrial cancer: a meta-analysis,” Diabetologia, vol. 50, no. 7, pp. 1365–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. R. E. James, A. Lukanova, L. Dossus et al., “Postmenopausal serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study,” Cancer Prevention Research, vol. 4, no. 10, pp. 1626–1635, 2011. View at Google Scholar
  106. N. E. Allen, T. J. Key, L. Dossus et al., “Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC),” Endocrine-Related Cancer, vol. 15, no. 2, pp. 485–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. J. J. Castillo, N. Mull, J. L. Reagan, S. Nemr, and J. Mitri, “Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies,” Blood, vol. 119, no. 21, pp. 4845–4850, 2012. View at Google Scholar
  108. V. L. Z. Gordon-Dseagu, N. Shelton, and J. S. Mindell, “Epidemiological evidence of a relationship between type-1 diabetes mellitus and cancer: a review of the existing literature,” International Journal of Cancer, vol. 132, no. 3, pp. 501–508, 2013. View at Google Scholar
  109. R. J. Stevens, A. W. Roddam, and V. Beral, “Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis,” British Journal of Cancer, vol. 96, no. 3, pp. 507–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. “CDC—2011 National Estimates—2011 National Diabetes Fact Sheet—Publications—Diabetes DDT”.
  111. S. H. Saydah, C. M. Loria, M. S. Eberhardt, and F. L. Brancati, “Abnormal glucose tolerance and the risk of cancer death in the United States,” American Journal of Epidemiology, vol. 157, no. 12, pp. 1092–1100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. P. M. Rothwell, M. Wilson, C.-E. Elwin et al., “Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials,” The Lancet, vol. 376, no. 9754, pp. 1741–1750, 2010. View at Google Scholar
  113. C. Bosetti, V. Rosato, S. Gallus, J. Cuzick, and C. La Vecchia, “Aspirin and cancer risk: a quantitative review to 2011,” Annals of Oncology, vol. 23, no. 6, pp. 1403–1415, 2012. View at Google Scholar
  114. P. M. Rothwell, J. F. Price, F. G. R. Fowkes et al., “Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials,” The Lancet, vol. 379, no. 9826, pp. 1602–1612, 2012. View at Google Scholar
  115. F. Ikeda, Y. Doi, K. Yonemoto et al., “Hyperglycemia increases risk of gastric cancer posed by Helicobacter pylori infection: a population-based cohort study,” Gastroenterology, vol. 136, no. 4, pp. 1234–1241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. K. G. Brodovicz, T. D. Kou, C. M. Alexander et al., “Impact of diabetes duration and chronic pancreatitis on the association between type 2 diabetes and pancreatic cancer risk,” Diabetes, Obesity & Metabolism, vol. 14, no. 12, pp. 1123–1128, 2012. View at Google Scholar
  117. T. J. Beckman, R. M. Cuddihy, S. M. Scheitel, J. M. Naessens, J. M. Killian, and V. S. Pankratz, “Screening mammogram utilization in women with diabetes,” Diabetes Care, vol. 24, no. 12, pp. 2049–2053, 2001. View at Google Scholar · View at Scopus
  118. J. G. Marshall, J. M. Cowell, E. S. Campbell, and D. B. McNaughton, “Regional variations in cancer screening rates found in women with diabetes,” Nursing Research, vol. 59, no. 1, pp. 34–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. A. M. McBean and X. Yu, “The underuse of screening services among elderly women with diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1466–1472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Martin and R. Marais, “Metformin: a diabetes drug for cancer, or a cancer drug for diabetics?” Journal of Clinical Oncology, vol. 30, no. 21, pp. 2698–2700, 2012. View at Google Scholar
  121. R. Rattan, R. Ali Fehmi, and A. Munkarah, “Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis,” Journal of Oncology, vol. 2012, Article ID 928127, 12 pages, 2012. View at Publisher · View at Google Scholar
  122. E. J. Gallagher and D. LeRoith, “Diabetes, cancer, and metformin: connections of metabolism and cell proliferation,” Annals of the New York Academy of Sciences, vol. 1243, pp. 54–68, 2011. View at Google Scholar
  123. K.-H. Yan, C.-J. Yao, H.-Y. Chang, G.-M. Lai, A.-L. Cheng, and S.-E. Chuang, “The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells,” Molecular Carcinogenesis, vol. 49, no. 3, pp. 235–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. H. A. Hirsch, D. Iliopoulos, P. N. Tsichlis, and K. Struhl, “Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission,” Cancer Research, vol. 69, no. 19, pp. 7507–7511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. Z. Zhu, W. Jiang, M. D. Thompson, J. N. McGinley, and H. J. Thompson, “Metformin as an energy restriction mimetic agent for breast cancer prevention,” Journal of Carcinogenesis, vol. 10, article 17, 2011. View at Google Scholar
  126. S. D. Hursting, S. M. Smith, L. M. Lashinger, A. E. Harvey, and S. N. Perkins, “Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research,” Carcinogenesis, vol. 31, no. 1, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Algire, O. Moiseeva, X. Deschênes-Simard et al., “Metformin reduces endogenous reactive oxygen species and associated DNA damage,” Cancer Prevention Research, vol. 5, no. 4, pp. 536–543, 2012. View at Google Scholar
  128. H. Noto, A. Goto, T. Tsujimoto, and M. Noda, “Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis,” PloS One, vol. 7, no. 3, Article ID e33411, 2012. View at Google Scholar
  129. S. Jiralerspong, S. L. Palla, S. H. Giordano et al., “Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer,” Journal of Clinical Oncology, vol. 27, no. 20, pp. 3297–3302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. B.-X. Tan, W.-X. Yao, J. Ge et al., “Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes,” Cancer, vol. 117, no. 22, pp. 5103–5111, 2011. View at Google Scholar
  131. J. H. Lee, T. Kim II, S. M. Jeon, S. P. Hong, J. H. Cheon, and W. H. Kim, “The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus,” International Journal of Cancer, vol. 131, no. 3, pp. 752–759, 2012. View at Google Scholar
  132. G. Z. Rocha, M. M. Dias, E. R. Ropelle et al., “Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth,” Clinical Cancer Research, vol. 17, no. 12, pp. 3993–4005, 2011. View at Google Scholar
  133. K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Aiello, G. Pandini, F. Frasca et al., “Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells,” Endocrinology, vol. 147, no. 9, pp. 4463–4475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Rubenstrunk, R. Hanf, D. W. Hum, J.-C. Fruchart, and B. Staels, “Safety issues and prospects for future generations of PPAR modulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 1065–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Monami, C. Lamanna, N. Marchionni, and E. Mannucci, “Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials,” Diabetes Care, vol. 31, no. 7, pp. 1455–1460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. I. N. Colmers, S. L. Bowker, S. R. Majumdar, and J. A. Johnson, “Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis,” Canadian Medical Association Journal, vol. 184, no. 12, pp. 675–683, 2012. View at Google Scholar
  138. M. Elashoff, A. V. Matveyenko, B. Gier, R. Elashoff, and P. C. Butler, “Pancreatitis, pancreatic, and thyroid cancer with Glucagon-like peptide-1based therapies,” Gastroenterology, vol. 141, no. 1, pp. 150–156, 2011. View at Google Scholar · View at Scopus
  139. C. J. Currie, C. D. Poole, and E. A. M. Gale, “The influence of glucose-lowering therapies on cancer risk in type 2 diabetes,” Diabetologia, vol. 52, no. 9, pp. 1766–1777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Bodmer, C. Becker, C. Meier, S. S. Jick, and C. R. Meier, “Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis,” The American Journal of Gastroenterology, vol. 107, no. 4, pp. 620–626, 2012. View at Google Scholar
  141. S. L. Bowker, S. R. Majumdar, P. Veugelers, and J. A. Johnson, “Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin,” Diabetes Care, vol. 29, no. 2, pp. 254–258, 2006. View at Google Scholar · View at Scopus
  142. D. Soranna, L. Scotti, A. Zambon et al., “Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis,” The Oncologist, vol. 17, no. 6, pp. 813–822, 2012. View at Google Scholar
  143. S. Jabbour, “Primary care physicians and insulin initiation: multiple barriers, lack of knowledge or both?” International Journal of Clinical Practice, vol. 62, no. 6, pp. 845–847, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Janghorbani, M. Dehghani, and M. Salehi-Marzijarani, “Systematic review and meta-analysis of insulin therapy and risk of cancer,” Hormones & Cancer, vol. 3, no. 4, pp. 137–146, 2012. View at Google Scholar
  145. D. Simon and B. Balkau, “Diabetes mellitus, hyperglycaemia and cancer,” Diabetes & Metabolism, vol. 36, no. 3, pp. 182–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. S. K. Garg, I. B. Hirsch, and J. S. Skyler, “Insulin glargine and cancer-an unsubstantiated allegation,” Diabetes Technology & Therapeutics, vol. 11, no. 8, pp. 473–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. S. J. Pocock and L. Smeeth, “Insulin glargine and malignancy: an unwarranted alarm,” The Lancet, vol. 374, no. 9689, pp. 511–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. X. Du, R. Zhang, Y. Xue et al., “Insulin glargine and risk of cancer: a meta-analysis,” The International Journal of Biological Markers, vol. 27, no. 3, pp. 241–246, 2012. View at Google Scholar
  149. J. A. Davila, L. Rabeneck, D. H. Berger, and H. B. El-Serag, “Postoperative 30-day mortality following surgical resection for colorectal cancer in veterans: changes in the right direction,” Digestive Diseases and Sciences, vol. 50, no. 9, pp. 1722–1728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. S. A. Little, W. R. Jarnagin, R. P. DeMatteo, L. H. Blumgart, and Y. Fong, “Diabetes is associated with increased perioperative mortality but equivalent long-term outcome after hepatic resection for colorectal cancer,” Journal of Gastrointestinal Surgery, vol. 6, no. 1, pp. 88–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Abunasra, S. Lewis, L. Beggs, J. Duffy, D. Beggs, and E. Morgan, “Predictors of operative death after oesophagectomy for carcinoma,” The British Journal of Surgery, vol. 92, no. 8, pp. 1029–1033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. R. C. Karl, R. Schreiber, D. Boulware, S. Baker, and D. Coppola, “Factors affecting morbidity, mortality, and survival in patients undergoing ivor lewis esophagogastrectomy,” Annals of Surgery, vol. 231, no. 5, pp. 635–643, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. B. B. Barone, H.-C. Yeh, C. F. Snyder et al., “Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 300, no. 23, pp. 2754–2764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. A. G. Renehan, H.-C. Yeh, J. A. Johnson, S. H. Wild, E. A. M. Gale, and H. Møller, “Diabetes and cancer (2): evaluating the impact of diabetes on mortality in patients with cancer,” Diabetologia, vol. 55, no. 6, pp. 1619–1632, 2012. View at Google Scholar
  155. X. H. Zhou, Q. Qiao, B. Zethelius et al., “Diabetes, prediabetes and cancer mortality,” Diabetologia, vol. 53, no. 9, pp. 1867–1876, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. S. R. K. Seshasai, S. Kaptoge, A. Thompson et al., “Diabetes mellitus, fasting glucose, and risk of cause-specific death,” The New England Journal of Medicine, vol. 364, no. 9, pp. 829–841, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. L. V. van de Poll-Franse, S. Houterman, M. L. G. Janssen-Heijnen, M. W. Dercksen, J. W. W. Coebergh, and H. R. Haak, “Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population based analysis,” International Journal of Cancer, vol. 120, no. 9, pp. 1986–1992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. A. V. D'Amico, M. H. Braccioforte, B. J. Moran, and M.-H. Chen, “Causes of death in men with prevalent diabetes and newly diagnosed high-versus favorable-risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 5, pp. 1329–1337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. S. T. Fleming, H. G. Pursley, B. Newman, D. Pavlov, and K. Chen, “Comorbidity as a predictor of stage of illness for patients with breast cancer,” Medical Care, vol. 43, no. 2, pp. 132–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. T. P. Srokowski, S. Fang, G. N. Hortobagyi, and S. H. Giordano, “Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer,” Journal of Clinical Oncology, vol. 27, no. 13, pp. 2170–2176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. C. F. Snyder, K. B. Stein, B. B. Barone et al., “Does pre-existing diabetes affect prostate cancer prognosis? A systematic review,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 1, pp. 58–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. J. A. Meyerhardt, P. J. Catalano, D. G. Haller et al., “Impact of diabetes mellitus on outcomes in patients with colon cancer,” Journal of Clinical Oncology, vol. 21, no. 3, pp. 433–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. J. M. Chan, D. M. Latini, J. Cowan, J. Duchane, and P. R. Carroll, “History of diabetes, clinical features of prostate cancer, and prostate cancer recurrence-data from CaPSURE (United States),” Cancer Causes & Control, vol. 16, no. 7, pp. 789–797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. P. J. Saylor and M. R. Smith, “Metabolic complications of androgen deprivation therapy for prostate cancer,” The Journal of Urology, vol. 181, no. 5, pp. 1998–2008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. J. Bellmunt, C. Szczylik, J. Feingold, A. Strahs, and A. Berkenblit, “Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features,” Annals of Oncology, vol. 19, no. 8, pp. 1387–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. L. J. Malizzia and A. Hsu, “Temsirolimus, an mTOR inhibitor for treatment of patients with advanced renal cell carcinoma,” Clinical Journal of Oncology Nursing, vol. 12, no. 4, pp. 639–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. P. T. Campbell, C. C. Newton, A. V. Patel, E. J. Jacobs, and S. M. Gapstur, “Diabetes and cause-specific mortality in a prospective cohort of one million u.s. adults,” Diabetes Care, vol. 35, no. 9, pp. 1835–1844, 2012. View at Google Scholar
  168. P. A. Sakkinen, P. Wahl, M. Cushman, M. R. Lewis, and R. P. Tracy, “Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome,” American Journal of Epidemiology, vol. 152, no. 10, pp. 897–907, 2000. View at Publisher · View at Google Scholar · View at Scopus
  169. S. Tsugane and M. Inoue, “Insulin resistance and cancer: epidemiological evidence,” Cancer Science, vol. 101, no. 5, pp. 1073–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Prisco, G. Romano, F. Peruzzi, B. Valentinis, and R. Baserga, “Insulin and IGF-I receptors signaling in protection from apoptosis,” Hormone and Metabolic Research, vol. 31, no. 2-3, pp. 80–89, 1999. View at Google Scholar
  172. H. M. Khandwala, I. E. Mccutcheon, A. Flyvbjerg, and K. E. Friend, “The effects of insulin-like growth factors on tumorigenesis and neoplastic growth,” Endocrine Reviews, vol. 21, no. 3, pp. 215–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  173. K. Masur, C. Vetter, A. Hinz et al., “Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levels involved in tumour cell migration, adhesion and proliferation,” British Journal of Cancer, vol. 104, no. 2, pp. 345–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. F. Frasca, G. Pandini, P. Scalia et al., “Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3278–3288, 1999. View at Google Scholar · View at Scopus
  175. A. Corbould, H. Zhao, S. Mirzoeva, F. Aird, and A. Dunaif, “Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome,” Diabetes, vol. 55, no. 3, pp. 751–759, 2006. View at Google Scholar · View at Scopus
  176. C. A. Krone and J. T. A. Ely, “Controlling hyperglycemia as an adjunct to cancer therapy,” Integrative Cancer Therapies, vol. 4, no. 1, pp. 25–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. W. Li, Q. Ma, J. Liu et al., “Hyperglycemia as a mechanism of pancreatic cancer metastasis,” Frontiers in Bioscience, vol. 17, pp. 1761–1774, 2012. View at Google Scholar
  178. K. Yamasaki, Y. Hayashi, S. Okamoto, M. Osanai, and G.-H. Lee, “Insulin-independent promotion of chemically induced hepatocellular tumor development in genetically diabetic mice,” Cancer Science, vol. 101, no. 1, pp. 65–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Yamagishi, K. Nakamura, H. Inoue, S. Kikuchi, and M. Takeuchi, “Possible participation of advanced glycation end products in the pathogenesis of colorectal cancer in diabetic patients,” Medical Hypotheses, vol. 64, no. 6, pp. 1208–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Banerjee and M. Saxena, “Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes,” Clinica Chimica Acta, vol. 413, no. 15-16, pp. 1163–1170, 2012. View at Google Scholar
  182. B. Arcidiacono, S. Iiritano, A. Nocera et al., “Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms,” Experimental Diabetes Research, vol. 2012, Article ID 789174, 12 pages, 2012. View at Publisher · View at Google Scholar
  183. G. R. Romeo, J. Lee, and S. E. Shoelson, “Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 8, pp. 1771–1776, 2012. View at Google Scholar
  184. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Google Scholar
  186. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  187. F. Balkwill, “TNF-alpha in promotion and progression of cancer,” Cancer Metastasis Reviews, vol. 25, no. 3, pp. 409–416, 2006. View at Google Scholar
  188. D. Iliopoulos, H. A. Hirsch, and K. Struhl, “An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation,” Cell, vol. 139, no. 4, pp. 693–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Ulisse, E. Baldini, S. Sorrenti, and M. D'Armiento, “The urokinase plasminogen activator system: a target for anti-cancer therapy,” Current Cancer Drug Targets, vol. 9, no. 1, pp. 32–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Karin, “Nuclear factor-kappaB in cancer development and progression,” Nature, vol. 441, no. 7092, pp. 431–436, 2006. View at Google Scholar
  191. P. Dandona, K. Thusu, S. Cook et al., “Oxidative damage to DNA in diabetes mellitus,” The Lancet, vol. 347, no. 8999, pp. 444–445, 1996. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Lorenzi, D. F. Montisano, S. Toledo, and A. Barrieux, “High glucose induces DNA damage in cultured human endothelial cells,” The Journal of Clinical Investigation, vol. 77, no. 1, pp. 322–325, 1986. View at Google Scholar · View at Scopus
  194. F. Turturro, E. Friday, and T. Welbourne, “Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231,” BMC Cancer, vol. 7, article 96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. R. Robertson, H. Zhou, T. Zhang, and J. S. Harmon, “Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes,” Cell Biochemistry and Biophysics, vol. 48, no. 2-3, pp. 139–146, 2007. View at Google Scholar
  196. R. P. Robertson, J. Harmon, P. O. T. Tran, and V. Poitout, “Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes,” Diabetes, vol. 53, supplement 1, pp. S119–S124, 2004. View at Google Scholar · View at Scopus
  197. X. Yang, W. So, G. T. C. Ko et al., “Independent associations between low-density lipoprotein cholesterol and cancer among patients with type 2 diabetes mellitus,” Canadian Medical Association Journal, vol. 179, no. 5, pp. 427–437, 2008. View at Google Scholar
  198. X. Yang, R. C. W. Ma, W. Y. So et al., “Low triglyceride and nonuse of statins is associated with cancer in type 2 diabetes mellitus,” Cancer, vol. 117, no. 4, pp. 862–871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  199. M. Esteller, “The necessity of a human epigenome project,” Carcinogenesis, vol. 27, no. 6, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. S. A. Ross and J. A. Milner, “Epigenetic modulation and cancer: effect of metabolic syndrome?” The American Journal of Clinical Nutrition, vol. 86, no. 3, pp. 872–877, 2007. View at Google Scholar
  201. M. Verma, “Cancer control and prevention by nutrition and epigenetic approaches,” Antioxidants & Redox Signaling, vol. 17, no. 2, pp. 355–364, 2012. View at Google Scholar
  202. T. N. Le, J. E. Nestler, J. F. Strauss, and E. P. Wickham, “Sex hormone-binding globulin and type 2 diabetes mellitus,” Trends in Endocrinology and Metabolism, vol. 23, no. 1, pp. 32–40, 2012. View at Google Scholar
  203. R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers & Prevention, vol. 11, no. 12, pp. 1531–1543, 2002. View at Google Scholar · View at Scopus
  204. B. Bao, Z. Wang, Y. Li et al., “The complexities of obesity and diabetes with the development and progression of pancreatic cancer,” Biochimica et Biophysica Acta, vol. 1815, no. 2, pp. 135–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. E. Bråkenhielm, N. Veitonmäki, R. Cao et al., “Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2476–2481, 2004. View at Google Scholar
  206. H. S. Moon, X. Liu, J. M. Nagel et al., “Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice,” Gut, vol. 1136, pp. 1–10, 2012. View at Google Scholar
  207. S. S. Tworoger, A. H. Eliassen, T. Kelesidis et al., “Plasma adiponectin concentrations and risk of incident breast cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1510–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus