Table of Contents
ISRN Nephrology
Volume 2013, Article ID 612675, 5 pages
http://dx.doi.org/10.5402/2013/612675
Research Article

Sex-Related Difference in Nitric Oxide Metabolites Levels after Nephroprotectant Supplementation Administration against Cisplatin-Induced Nephrotoxicity in Wistar Rat Model: The Role of Vitamin E, Erythropoietin, or N-Acetylcysteine

1Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
2Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran

Received 22 January 2013; Accepted 14 February 2013

Academic Editors: C. Musso and A. H. Tzamaloukas

Copyright © 2013 Mehdi Nematbakhsh and Zahra Pezeshki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Eshraghi-Jazi, M. Nematbakhsh, H. Nasri et al., “The protective role of endogenous nitric oxide donor (L-arginine) in cisplatin-induced nephrotoxicity: gender related differences in rat model,” Journal of Research in Medical Sciences, vol. 16, no. 11, pp. 1389–1396, 2011. View at Google Scholar
  2. S. Saleh, A. A. Ain-Shoka, E. El-Demerdash, and M. M. Khalef, “Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury,” Chemotherapy, vol. 55, no. 6, pp. 399–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Saleh and E. El-Demerdash, “Protective effects of L-arginine against cisplatin-induced renal oxidative stress and toxicity: role of nitric oxide,” Basic and Clinical Pharmacology and Toxicology, vol. 97, no. 2, pp. 91–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Eguchi, Y. Fujimori, T. Ohta, K. Kunimasa, and T. Nakano, “Calpain is involved in cisplatin-induced endothelial injury in an in vitro three-dimensional blood vessel model,” International Journal of Oncology, vol. 37, no. 5, pp. 1289–1296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Nuver, E. C. de Haas, M. van Zweeden, J. A. Gietema, and C. Meijer, “Vascular damage in testicular cancer patients: a study on endothelial activation by bleomycin and cisplatin in vitro,” Oncology Reports, vol. 23, no. 1, pp. 247–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Montiel, L. Urso, E. P. de la Blanca, S. Marsigliante, and E. Jiménez, “Cisplatin reduces endothelial cell migration via regulation of type 2-matrix metalloproteinase activity,” Cellular Physiology and Biochemistry, vol. 23, no. 4–6, pp. 441–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ito, T. Okafuji, and T. Suzuki, “Vitamin E prevents endothelial injury associated with cisplatin injection into the superior mesenteric artery of rats,” Heart and Vessels, vol. 10, no. 4, pp. 178–184, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Ekor, G. O. Emerole, and E. O. Farombi, “Phenolic extract of soybean (Glycine max) attenuates cisplatin-induced nephrotoxicity in rats,” Food and Chemical Toxicology, vol. 48, no. 4, pp. 1005–1012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Y. Saad, T. A. O. Najjar, M. H. Daba, and A. C. Al-Rikabi, “Inhibition of nitric oxide synthase aggravates cisplatin-induced nephrotoxicity: effect of 2-amino-4-methylpyridine,” Chemotherapy, vol. 48, no. 6, pp. 309–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. C. Kone and C. Baylis, “Biosynthesis and homeostatic roles of nitric oxide in the normal kidney,” American Journal of Physiology, vol. 272, no. 5, part 2, pp. F561–F578, 1997. View at Google Scholar · View at Scopus
  11. R. F. Eich, T. Li, D. D. Lemon et al., “Mechanism of NO-induced oxidation of myoglobin and hemoglobin,” Biochemistry, vol. 35, no. 22, pp. 6976–6983, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. I. F. Metzger, J. T. C. Sertorio, and J. E. Tanus-Santos, “Relationship between systemic nitric oxide metabolites and cyclic GMP in healthy male volunteers,” Acta Physiologica, vol. 188, no. 2, pp. 123–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kelm, H. Preik-Steinhoff, M. Preik, and B. E. Strauer, “Serum nitrite sensitively reflects endothelial NO formation in human forearm vasculature: evidence for biochemical assessment of the endothelial L-arginine-NO pathway,” Cardiovascular Research, vol. 41, no. 3, pp. 765–772, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Kleinbongard, A. Dejam, T. Lauer et al., “Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans,” Free Radical Biology and Medicine, vol. 40, no. 2, pp. 295–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Lauer, M. Preik, T. Rassaf et al., “Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12814–12819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. N. S. Bryan, “Nitrite in nitric oxide biology: cause or consequence? A systems-based review,” Free Radical Biology and Medicine, vol. 41, no. 5, pp. 691–701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Kleinbongard, A. Dejam, T. Lauer et al., “Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals,” Free Radical Biology and Medicine, vol. 35, no. 7, pp. 790–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. B. Ahmed, N. D. L. Fisher, and N. K. Hollenberg, “Gender and the renal nitric oxide synthase system in healthy humans,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 916–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Higashino, H. Miya, H. Mukai, and Y. Miya, “Serum nitric oxide metabolite (NOx) levels in hypertensive patients at rest: a comparison of age, gender, blood pressure and complications using normotensive controls,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 8, pp. 725–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. B. McGuire, R. W. G. Watson, F. Pérez-Barriocanal, J. M. Fitzpatrick, and N. G. Docherty, “Gender differences in the renin-angiotensin and nitric oxide systems: relevance in the normal and diseased kidney,” Kidney and Blood Pressure Research, vol. 30, no. 2, pp. 67–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Page, H. Reich, J. Zhou et al., “Endothelial nitric oxide synthase gene/gender interactions and the renal hemodynamic response to angiotensin II,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3053–3060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. R. Wang, C. H. Yen, Y. F. Sun, and Y. T. Lau, “Gender-dependent response in blood pressure changes following the inhibition of nitric oxide synthase,” Chinese Journal of Physiology, vol. 46, no. 2, pp. 91–94, 2003. View at Google Scholar · View at Scopus
  23. K. Kauser and G. M. Rubanyi, “Gender difference in bioassayable endothelium-derived nitric oxide from isolated rat aortae,” American Journal of Physiology, vol. 267, no. 6, part 2, pp. H2311–H2317, 1994. View at Google Scholar · View at Scopus
  24. F. Ashrafi, M. Nematbakhsh, T. Safari et al., “A combination of vitamin C and losartan for cisplatin-induced nephrotoxicity in rats,” Iranian Journal of Kidney Diseases, vol. 6, no. 5, pp. 361–365, 2012. View at Google Scholar
  25. M. Nematbakhsh, F. Ashrafi, T. Safari et al., “Administration of vitamin E and losartan as prophylaxes in cisplatin-induced nephrotoxicity model in rats,” Journal of Nephrology, vol. 25, no. 3, pp. 410–417, 2012. View at Publisher · View at Google Scholar
  26. S. Atasayar, H. Gürer-Orhan, H. Orhan, B. Gürel, G. Girgin, and H. Ozgunes, “Preventive effect of aminoguanidine compared to vitamin E and C on cisplatin-induced nephrotoxicity in rats,” Experimental and Toxicologic Pathology, vol. 61, no. 1, pp. 23–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. M. Antunes, J. D. Darin, and M. D. Bianchi, “Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study,” Pharmacological Research, vol. 41, no. 4, pp. 405–411, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Appenroth, S. Fröb, L. Kersten, F. K. Splinter, and K. Winnefeld, “Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats,” Archives of Toxicology, vol. 71, no. 11, pp. 677–683, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Abdelrahman, S. Al Salam, A. S. Almahruqi, I. S. Al Husseni, M. A. Mansour, and B. H. Ali, “N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity,” Journal of Applied Toxicology, vol. 30, no. 1, pp. 15–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Nisar and D. A. Feinfeld, “N-acetylcysteine as salvage therapy in cisplatin nephrotoxicity,” Renal Failure, vol. 24, no. 4, pp. 529–533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Kong, L. Zhuo, C. Gao et al., “Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis,” Journal of Nephrology, vol. 26, no. 1, pp. 219–227, 2012. View at Publisher · View at Google Scholar
  32. D. Zafirov, G. Petrusevska, A. Sikole et al., “Erythropoietin reduces cumulative nephrotoxicity from cisplatin and enhances renal tubular cell proliferation,” Prilozi, vol. 29, no. 2, pp. 167–183, 2008. View at Google Scholar · View at Scopus
  33. S. Yalcin, S. Muftuoglu, E. Cetin et al., “Protection against cisplatin-induced nephrotoxicity by recombinant human erythropoietin,” Medical Oncology, vol. 20, no. 2, pp. 169–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Baylis and P. Vallance, “Measurement of nitrite and nitrate levels in plasma and urine—what does this measure tell us about the activity of the endogenous nitric oxide system?” Current Opinion in Nephrology and Hypertension, vol. 7, no. 1, pp. 59–62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. M. R. Adams, C. J. Forsyth, W. Jessup, J. Robinson, and D. S. Celermajer, “Oral L-arginine inhibits platelet aggregation but does not enhance endothelium-dependent dilation in healthy young men,” Journal of the American College of Cardiology, vol. 26, no. 4, pp. 1054–1061, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Miyoshi, Y. Li, D. M. Shih et al., “Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice,” Life Sciences, vol. 79, no. 6, pp. 525–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. I. Chirino, J. Trujillo, D. J. Sanchez-Gonzalez et al., “Selective iNOS inhibition reduces renal damage induced by cisplatin,” Toxicology Letters, vol. 176, no. 1, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Taskiran, F. Z. Kutay, E. Sozmen, and S. Pogun, “Sex differences in nitrite/nitrate levels and antioxidant defense in rat brain,” NeuroReport, vol. 8, no. 4, pp. 881–884, 1997. View at Google Scholar · View at Scopus
  39. T. Watanabe, M. Akishita, K. Toba et al., “Influence of sex and age on serum nitrite/nitrate concentration in healthy subjects,” Clinica Chimica Acta, vol. 301, no. 1-2, pp. 169–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. González-Correa, M. M. Arrebola, J. Muñoz-Marín et al., “Gender differences in the effect of aspirin on retinal ischemia, prostanoid synthesis and nitric oxide production in experimental type 1-like diabetes,” Vascular Pharmacology, vol. 47, no. 2-3, pp. 83–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. N. M. Dietz, “Gender and nitric oxide-mediated vasodilation in humans,” Lupus, vol. 8, no. 5, pp. 402–408, 1999. View at Google Scholar · View at Scopus
  42. J. F. Reckelhoff, B. S. Hennington, A. G. Moore, E. J. Blanchard, and J. Cameron, “Gender differences in the renal nitric oxide (NO) system. Dissociation between expression of endothelial NO synthase and renal hemodynamic response to NO synthase inhibition,” American Journal of Hypertension, vol. 11, no. 1, part 1, pp. 97–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Abeyama, I. Maruyama, S. Suenaga, and T. Noikura, “Nitric oxide production in the lesions of temporomandibular disorders and gender differences in nitric oxide production,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 84, no. 4, pp. 330–331, 1997. View at Google Scholar · View at Scopus
  44. M. Ding, J. L. Wong, N. E. Rogers, L. J. Ignarro, and R. R. Voskuhl, “Gender differences of inducible nitric oxide production in SJL/J mice with experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 77, no. 1, pp. 99–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Hayashi, J. M. Fukuto, L. J. Ignarro, and G. Chaudhuri, “Gender differences in atherosclerosis: possible role of nitric oxide,” Journal of Cardiovascular Pharmacology, vol. 26, no. 5, pp. 792–802, 1995. View at Google Scholar · View at Scopus
  46. M. Haghighi, M. Nematbakhsh, A. Talebi et al., “The role of angiotensin II receptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: gender-related differences,” Renal Failure, vol. 34, no. 8, pp. 1046–1051, 2012. View at Publisher · View at Google Scholar
  47. M. Nematbakhsh, Z. Pezeshki, F. Eshraghi-Jazi et al., “Vitamin E, vitamin C, or losartan is not nephroprotectant against cisplatin-induced nephrotoxicity in presence of estrogen in ovariectomized rat model,” International Journal of Nephrology, vol. 2012, Article ID 284896, 10 pages, 2012. View at Publisher · View at Google Scholar
  48. M. Nematbakhsh, A. Talebi, H. Nasri et al., “Some evidence for sex-based differences in cisplatin-induced nephrotoxicity in rats,” Clinical and Experimental Medical Letters, vol. 53, no. 1-2, pp. 29–31, 2012. View at Google Scholar
  49. D. Stakišaitis, G. Dudeniene, R. J. Jankunas, G. Graželiene, J. Didžiapetriene, and B. Pundziene, “Cisplatin increases urinary sodium excretion in rats: gender-related differences,” Medicina, vol. 46, no. 1, pp. 45–50, 2010. View at Google Scholar · View at Scopus