Table of Contents
ISRN Organic Chemistry
Volume 2013 (2013), Article ID 616932, 5 pages
http://dx.doi.org/10.1155/2013/616932
Research Article

An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

1Department of Chemistry, National Institute of Technology, Warangal, Andhra Pradesh 506 004, India
2Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Received 2 July 2013; Accepted 1 August 2013

Academic Editors: E. Bertounesque, F. C. Pigge, and Z. Wimmer

Copyright © 2013 Janardhan Banothu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Sundberg, The Chemistry of Indoles, Academic Press, New York, NY, USA, 1996.
  2. S. V. Laxmi, B. Janardhan, B. Rajitha, P. Raghavaiah, and P. Srinivas, “Synthesis, single crystal X-ray studies and antimicrobial activities of novel Indole barbiturates,” Medicinal Chemistry Research, vol. 21, no. 10, pp. 2896–2901, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Osawa and M. Namiki, “Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria,” Tetrahedron Letters, vol. 24, no. 43, pp. 4719–4722, 1983. View at Google Scholar · View at Scopus
  4. M. A. Zeligs, “Diet and estrogen status: the cruciferous connection,” Journal of Medicinal Food, vol. 1, no. 2, pp. 67–82, 1998. View at Google Scholar
  5. J. J. Michnovicz, H. L. Bradlow, M. J. Huang et al., “Food phytochemicals for cancer prevention 1: fruits and vegetables,” American Chemical Society, pp. 282–293, 1994. View at Google Scholar
  6. K. Singh, S. Sharma, and A. Sharma, “Unique versatility of Amberlyst 15. An acid and solvent-free paradigm towards synthesis of bis(heterocyclyl)methane derivatives,” Journal of Molecular Catalysis A, vol. 347, no. 1-2, pp. 34–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-J. Ji, S.-Y. Wang, Y. Zhang, and T.-P. Loh, “Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions,” Tetrahedron, vol. 60, no. 9, pp. 2051–2055, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Yadav, M. K. Gupta, R. Jain, N. N. Yadav, and B. V. S. Reddy, “A practical synthesis of bis(indolyl)methanes employing boric acid,” Monatshefte fur Chemie, vol. 141, no. 9, pp. 1001–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. P. Bandgar, A. V. Patil, and V. T. Kamble, “Fluoroboric acid adsorbed on silica gel catalyzed synthesis of bisindolyl alkanes under mild and solvent-free conditions,” Arkivoc, vol. 2007, no. 16, pp. 252–259, 2007. View at Google Scholar
  10. W.-J. Li, X.-F. Lin, J. Wang, G.-L. Li, and Y.-G. Wang, “A mild and efficient synthesis of bis-indolylmethanes catalyzed by sulfamic acid,” Synthetic Communications, vol. 35, no. 21, pp. 2765–2769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Heravi, F. Nahavandi, S. Sadjadi, H. A. Oskooie, and M. Tajbakhsh, “Convenient synthesis of bis(indol)alkanes by niobium(V) chloride,” Synthetic Communications, vol. 39, no. 18, pp. 3285–3292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Pore, U. V. Desai, T. S. Thopate, and P. P. Wadgaonkar, “A mild, expedient, solventless synthesis of bis(indolyl)alkanes using silica sulfuric acid as a reusable catalyst,” Arkivoc, vol. 2006, no. 12, pp. 75–80, 2006. View at Google Scholar · View at Scopus
  13. S. A. Sadaphal, S. S. Sonar, M. N. Ware, and M. S. Shingare, “Cellulose sulfuric acid: reusable catalyst for solvent-free synthesis of bis(indolyl)methanes at room temperature,” Green Chemistry Letters and Reviews, vol. 1, no. 4, pp. 191–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Karthik, C. J. Magesh, P. T. Perumal, M. Palanichamy, B. Arabindoo, and V. Murugesan, “Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes,” Applied Catalysis A, vol. 286, no. 1, pp. 137–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. X.-F. Zeng, S.-J. Ji, and S.-Y. Wang, “Novel method for synthesis of unsymmetrical bis(indolyl)alkanes catalyzed by ceric ammonium nitrate (CAN) under ultrasonic irradiation,” Tetrahedron, vol. 61, no. 43, pp. 10235–10241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. S. Ekbote, K. M. Deshmukh, Z. S. Qureshi, and B. M. Bhanage, “Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes,” Green Chemistry Letters and Reviews, vol. 4, no. 2, pp. 177–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Hazarika, S. D. Sharma, and D. Konwar, “Efficient synthesis of bis- and tris-indolylalkanes catalyzed by a Brønsted acid-surfactant catalyst in water,” Synthetic Communications, vol. 38, no. 17, pp. 2870–2880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-Y. Peng, Q.-L. Zhang, J.-J. Yuan, and J.-P. Cheng, “A facile aqueous synthesis of bis(indol-3-yl)alkanes catalyzed by dodecylbenzenesulfonic acid,” Chinese Journal of Chemistry, vol. 26, no. 12, pp. 2228–2232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. T. Kamble, K. R. Kadam, N. S. Joshi, and D. B. Muley, “HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates,” Catalysis Communications, vol. 8, no. 3, pp. 498–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mishra and R. Ghosh, “Ecofriendly and sustainable efficient synthesis of bis(indolyl)methanes based on recyclable Broønsted (CSA) or Lewis (ZrOCl2.8H2O) acid catalysts,” Indian Journal of Chemistry B, vol. 50, no. 11, pp. 1630–1636, 2011. View at Google Scholar · View at Scopus
  21. X. Mi, S. Luo, J. He, and J.-P. Cheng, “Dy(OTf)3 in ionic liquid: an efficient catalytic system for reactions of indole with aldehydes/ketones or imines,” Tetrahedron Letters, vol. 45, no. 23, pp. 4567–4570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Deb and P. J. Bhuyan, “An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature,” Tetrahedron Letters, vol. 47, no. 9, pp. 1441–1443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Yadav, B. V. S. Reddy, and S. Sunitha, “Efficient and eco-friendly process for the synthesis of bis(1H-indol-3-yl)methanes using ionic liquids,” Advanced Synthesis and Catalysis, vol. 345, no. 3, pp. 349–352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Janardhan and B. Rajitha, “Brønsted acidic ionic liquid catalyzed highly efficient synthesis of chromeno pyrimidinone derivatives and their antimicrobial activity,” Chinese Chemical Letters, vol. 23, no. 9, pp. 1015–1018, 2012. View at Google Scholar
  25. N. G. Khaligh and F. Shirini, “Ultrasound assisted the chemoselective 1, 1-diacetate protection and deprotection of aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate salt as a eco-benign, efficient and reusable solid acid catalyst,” Ultrasonics Sonochemistry, vol. 20, no. 1, pp. 19–25, 2013. View at Google Scholar
  26. N. D. Kokare, J. N. Sangshetti, and D. B. Shinde, “Oxalic acid as a catalyst for efficient synthesis of bis-(indolyl)methanes, and 14-aryl-14H-dibenzo[a,j]xanthenes in water,” Chinese Chemical Letters, vol. 19, no. 10, pp. 1186–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Hasaninejad, M. Shekouhy, A. Zare, S. M. S. Hoseini Ghattali, and N. Golzar, “PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4, 4′-(Arylmethylene)- bis(3-methyl-1-phenyl-1hpyrazol-5-ol)s in water,” Journal of the Iranian Chemical Society, vol. 8, no. 2, pp. 411–423, 2011. View at Google Scholar · View at Scopus