Table of Contents
ISRN Mechanical Engineering
Volume 2013 (2013), Article ID 625175, 20 pages
http://dx.doi.org/10.1155/2013/625175
Review Article

A Critical Review of Computational Methods and Their Application in Industrial Fan Design

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
2Fläkt Woods Limited, Axial Way, Colchester CO4 5ZD, UK

Received 13 August 2013; Accepted 23 September 2013

Academic Editors: O. Allix, S. W. Chang, and R.-J. Yang

Copyright © 2013 Alessandro Corsini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Lakshminarayana, Fluid Dynamics and Heat Transfer of Turbomachinery, Wiley-Interscience, New York, NY, USA, 1996.
  2. N. A. Cumpsty, Compressor Aerodynamics, Krieger Publishing Company, Malabar, Fla, USA, 2004.
  3. C. Tropea, A. L. Yarin, and J. F. Foss, Eds., Springer Handbook of Experimental Fluid Mechanics, Springer, Paris, France, 2007.
  4. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, Academic Press, Orlando, Fla, USA, 1986.
  5. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, Academic Press, Orlando, Fla, USA, 1986.
  6. L. Huang and J. Wang, “Acoustic analysis of a computer cooling fan,” Journal of the Acoustical Society of America, vol. 118, no. 4, pp. 2190–2200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Bianchi, A. Corsini, and A. G. Sheard, “Demonstration of a stall detection system for induced draft fans,” Proceedings of the Institution of Mechanical Engineers A, vol. 227, pp. 272–284, 2013. View at Google Scholar
  8. Commission Regulation (EU), No. 327/2011, Official Journal of the European Union, June 2011, http://www.amca.org/UserFiles/file/COMMISSION%20REGULATION%20%28EU%29%20No%20327-2011.pdf.
  9. A. Hauer and J. Brooks, “Fan motor efficiency grades in the European market,” AMCA Inmotion, no. 2, pp. 14–20, 2012. View at Google Scholar
  10. U.S. Department of Energy, Energy Conservation Standards Rulemaking Framework for Commercial and Industrial Fans and Blowers, U.S. Department of Energy, 2013.
  11. S. L. Gho, “AMCA grows in Asia,” AMCA Inmotion, no. 3, 2013. View at Google Scholar
  12. J. H. Horlock and J. D. Denton, “A review of some early design practice using computational fluid dynamics and a current perspective,” Journal of Turbomachinery, vol. 127, no. 1, pp. 5–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. K. Kundu and I. M. Cohen, Fluid Mechanics, Elsevier Academic Press, Oxford, UK, 4th edition, 2008.
  14. P. A. Davidson, Turbulence, An Introduction for Scientists and Engineers, Oxford University Press, Oxford, UK, 2004.
  15. K. Hanjalić, S. Kenjeres, M. J. Tummers, and H. J. J. Jonker, Analysis and Modelling of Physical Transport Phenomena, VSSD, Delft, The Netherlands, 2008.
  16. P. A. Durbin and B. A. Pettersson Reif, Statistical Theory and Modelling for Turbulent Flows, John Wiley & Sons, Chichester, UK, 2001.
  17. C. Hirsch, Numerical Computation of Internal and External Flows, Butterworth-Heinemann, Oxford, UK, 2007.
  18. S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  19. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper 92-0439, Reno, Nev, USA, January 1992.
  20. G. Rábai and J. Vad, “Validation of a computational fluid dynamics method to be applied to linear cascades of twisted-swept blades,” Periodica Polytechnica, Mechanical Engineering, vol. 49, no. 2, pp. 163–180, 2005. View at Google Scholar · View at Scopus
  21. S. Šarić, B. Kniesner, A. Mehdizadeh, S. Jakirlić, K. Hanjalić, and C. Tropea, “Comparative assessment of hybrid LES/RANS models in turbulent flows separating from smooth surfaces,” in Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, S. H. Peng and W. Haase, Eds., vol. 97, pp. 142–151, 2008. View at Google Scholar
  22. W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence,” International Journal of Heat and Mass Transfer, vol. 15, no. 2, pp. 301–314, 1972. View at Google Scholar · View at Scopus
  23. D. C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence models,” AIAA Journal, vol. 26, no. 11, pp. 1299–1310, 1988. View at Google Scholar · View at Scopus
  24. D. C. Wilcox, Turbulence Modelling for CFD, DCW Industries, La Canada, Canada, 1993.
  25. F. R. Menter, “Zonal two-equation k-w turbulence model for aerodynamic flows,” in Proceedings of the 24th Fluid Dynamics Conference, AIAA Paper 1993-2906, Orlando, Fla, USA, July 1993.
  26. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994. View at Google Scholar · View at Scopus
  27. M. Pinelli, C. Ferrari, A. Suman, M. Morini, and M. Rossini, “Fluid dynamic design and optimization of a double entry fan driven by tractor power take off for mist sprayer applications,” in Proceedings of the Fan 2012 Conference, Senlis, France, April 2012.
  28. A. Corsini and F. Rispoli, “Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy-viscosity closure,” International Journal of Heat and Fluid Flow, vol. 17, pp. 108–155, 2005. View at Google Scholar
  29. A. G. Sheard, A. Corsini, S. Minotti, and F. Sciulli, “The role of computational methods in the development of an aero-acoustic design methodology: application in a family of large industrial fans,” in Proceedings of the 14th International Conference on Modelling Fluid Flow Technologies, pp. 71–79, Budapest, Hungary, September 2009.
  30. A. Corsini and F. Rispoli, “Using sweep to extend the stall-free operational range in axial fan rotors,” Proceedings of the Institution of Mechanical Engineers A, vol. 218, no. 3, pp. 129–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Corsini and A. G. Sheard, “Tip end-plate concept based on leakage vortex rotation number control,” Journal of Computational and Applied Mechanics, vol. 8, pp. 21–37, 2007. View at Google Scholar
  32. A. Corsini, F. Rispoli, and A. G. Sheard, “Development of improved blade tip endplate concepts for low-noise operation in industrial fans,” Proceedings of the Institution of Mechanical Engineers A, vol. 221, no. 5, pp. 669–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Corsini, F. Rispoli, and A. G. Sheard, “Aerodynamic performance of blade tip end-plates designed for low-noise operation in Axial flow fans,” Journal of Fluids Engineering, vol. 131, no. 8, Article ID 0811011, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Corsini, F. Rispoli, and A. G. Sheard, “Shaping of tip end-plate to control leakage vortex swirl in axial flow fans,” Journal of Turbomachinery, vol. 132, no. 3, Article ID 031005, 9 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Vad and C. Horváth, “Study on the effects of axial clearance size on the operation of an axial flow electric motor cooling fan,” in Proceedings of the 10th European Turbomachinery Conference, Lappeenranta, Finland, April 2013.
  36. A. Corsini, G. Delibra, and A. G. Sheard, “Leading edge bumps in reversible axial fans,” in Proceedings of 58th American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, Paper No. GT2013-94853, San Antonio, Tex, USA, June 2013.
  37. F. S. Lien, W. L. Chen, and M. A. Leschziner, “Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations,” in Proceedings of the 3rd Symposium on Engineering Turbulence Modelling and Measurements, Crete, Greece, May 1996.
  38. S. Lee, S. Heo, and C. Cheong, “Prediction and reduction of internal blade-passing frequency noise of the centrifugal fan in a refrigerator,” International Journal of Refrigeration, vol. 33, no. 6, pp. 1129–1141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. van der Spuy, T. W. von Backström, and D. G. Kröger, “An evaluation of simplified methods to model the performance of axial flow fan arrays,” R & D Journal of the South African Institution of Mechanical Engineering, vol. 26, pp. 12–20, 2010. View at Google Scholar
  40. A. Corsini, F. Rispoli, A. G. Sheard, and P. Venturini, “Numerical simulation of coal-fly ash erosion in an induced draft fan,” Journal of Fluids Engineering, vol. 135, Article ID 081303, 12 pages, 2013. View at Google Scholar
  41. D. Borello, A. Corsini, F. Rispoli, and A. G. Sheard, “Large eddy simulation of a tunnel ventilation fan,” Journal of Fluids Engineering, vol. 135, Article ID 071102, 9 pages, 2013. View at Google Scholar
  42. M. Popovac and K. Hanjalić, “Compound wall treatment for RANS computation of complex turbulent flows and heat transfer,” Flow, Turbulence and Combustion, vol. 78, no. 2, pp. 177–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Craft, B. E. Launder, and K. Suga, “Development and application of a cubic eddy-viscosity model of turbulence,” International Journal of Heat and Fluid Flow, vol. 17, no. 2, pp. 108–115, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. W. L. Chen, F. S. Lien, and M. A. Leschziner, “Computational prediction of flow around highly loaded compressor-cascade blades with non-linear eddy-viscosity models,” International Journal of Heat and Fluid Flow, vol. 19, no. 4, pp. 307–319, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Hanjalić, M. Popovac, and M. Hadžiabdić, “A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD,” International Journal of Heat and Fluid Flow, vol. 25, no. 6, pp. 1047–1051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. P. A. Durbin, “Separated flow computations with the k-epsilon-v-squared model,” AIAA Journal, vol. 33, pp. 659–664, 1995. View at Google Scholar
  47. B. E. Launder and N. D. Sandham, Eds., Closure Strategies for Turbulent and Transitional Flows, Cambridge University Press, Cambridge, UK, 2002.
  48. K. Hanjalić and B. Launder, Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure, Cambridge University Press, Cambridge, UK, 2011.
  49. D. Borello, K. Hanjalić, and F. Rispoli, “Prediction of cascade flows with innovative second-moment closures,” Journal of Fluids Engineering, vol. 127, no. 6, pp. 1059–1070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Hanjalić and S. Jakirlić, “Contribution towards the second-moment closure modelling of separating turbulent flows,” Computer and Fluids, vol. 27, pp. 137–156, 1998. View at Google Scholar
  51. K. Hanjalić and S. Jakirlić, “A model of stress dissipation in second-moment closures,” Applied Scientific Research, vol. 51, pp. 513–518, 1993. View at Google Scholar
  52. P. A. Durbin, “A Reynolds stress model for near-wall turbulence,” Journal of Fluid Mechanics, vol. 249, pp. 465–498, 1993. View at Google Scholar · View at Scopus
  53. D. Borello, K. Hanjalić, and F. Rispoli, “Computation of tip-leakage flow in a linear compressor cascade with a second-moment turbulence closure,” International Journal of Heat and Fluid Flow, vol. 28, no. 4, pp. 587–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Kobayashi and M. Yoda, “Modified k-epsilon model for turbulent swirling flow in a straight pipe,” JSME International Journal, vol. 30, no. 259, pp. 66–71, 1987. View at Google Scholar · View at Scopus
  55. G. F. Sander and D. G. Lilley, “The performance of an annular vane swirler,” in Proceedings of the AIAA/SAE/ASME 19th Joint Propulsion Conference, Paper No. AIAA-83-1326, Seattle, Wash, USA, 1983.
  56. C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach,” Journal of Fluid Mechanics, vol. 227, pp. 245–272, 1991. View at Google Scholar · View at Scopus
  57. F. S. Lien and P. A. Durbin, “Non linear k-ε-v2 modelling with application to high lift,” in Proceedings of the CTR Summer Program, Stanford University, 1996.
  58. R. B. Langtry and F. R. Menter, “Transition modeling for general CFD applications in aeronautics,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2005-522, pp. 15513–15526, Reno, Nev, USA, January 2005. View at Scopus
  59. F. R. Menter, R. B. Langtry, S. Völker, and P. G. Huang, “Transition modelling for general purpose CFD codes,” Flow, Turbulence and Combustion, vol. 77, pp. 277–303, 2006. View at Google Scholar
  60. F. R. Menter, R. Langtry, and S. Volker, “Transition modelling for general purpose CFD codes,” Flow, Turbulence and Combustion, vol. 77, pp. 277–303, 2006. View at Google Scholar
  61. W. Piotrowski, W. Elsner, and S. Drobniak, “Transition prediction on turbine blade profile with intermittency transport equation,” in Proceedings of the 53rd American Society of Mechanical Engineers Gas Turbine and Aeroengine Congress, Paper No. GT2008-50796, Berlin, Germany, June 2008.
  62. Y. Yang, A. Lucius, and G. Brenner, “3D unsteady CFD simulation of the pressure fluctuation in a centrifugal fan,” in Proceedings of the Fan 2012 Conference, Senlis, France, April 2012.
  63. J. D. Denton and W. N. Dawes, “Computational fluid dynamics for turbomachinery design,” Proceedings of the Institution of Mechanical Engineers C, vol. 213, no. 2, pp. 107–124, 1999. View at Google Scholar · View at Scopus
  64. J. D. Denton, Extension of the Finite Volume Time Marching Method to Three Dimensions, VKI Lecture Series 1979-7, VKI, Rhode-St-Genèse, Belgium, 1979.
  65. M. Vanella, U. Piomelli, and E. Balaras, “Effect of grid discontinuities on large-eddy simulation statistics and flow fields,” Journal of Turbulence, vol. 9, article 32, 2008. View at Google Scholar · View at Scopus
  66. G. D. Thiart and T. W. von Backström, “Numerical simulation of the flow field near an axial flow fan operating under distorted inflow conditions,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 45, no. 2, pp. 189–214, 1993. View at Google Scholar · View at Scopus
  67. J. M. F. Oro, K. M. A. Díaz, C. S. Morros, and E. B. Marigorta, “Unsteady flow and wake transport in a low-speed axial fan with inlet guide vanes,” Journal of Fluids Engineering, vol. 129, no. 8, pp. 1015–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. I. A. Brailko, V. I. Mileshin, M. A. Nyukhtikov, and S. V. Pankov, “Computational and experimental investigation of unsteady and acoustic characteristics of counter—rotating fans,” in Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference, Parts A and B, vol. 2 of Paper No. HT-FED2004-56435, pp. 871–879, Charlotte, NC, USA, July 2004. View at Scopus
  69. D. Wolfram and T. H. Carolus, “Experimental and numerical investigation of the unsteady flow field and tone generation in an isolated centrifugal fan impeller,” Journal of Sound and Vibration, vol. 329, no. 21, pp. 4380–4397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. N. Son, J. Kim, and E. Y. Ahn, “Effects of bell mouth geometries on the flow rate of centrifugal blowers,” Journal of Mechanical Science and Technology, vol. 25, no. 9, pp. 2267–2276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Angeli, “HPC enabling of OpenFOAM for CFD applications,” in Proceedings of the OpenFOAM @ Mimesis and Numerical Simulation of the Mont Blanc Tunnel Workshop, CINECA, Bologna, Italy, November 2012.
  72. A. Betz, Introduction to the Theory of Flow Machines, Pergamon Press, Oxford, UK, 1966, (D. G. Randall, Translation).
  73. C. J. Meyer and D. G. Kröger, “Numerical simulation of the flow field in the vicinity of an axial flow fan,” International Journal for Numerical Methods in Fluids, vol. 36, no. 8, pp. 947–969, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. J. N. Sørensen and W. Z. Shen, “Numerical modelling of wind turbine wakes,” Journal of Fluids Engineering, vol. 124, pp. 393–399, 2002. View at Google Scholar
  75. P. Venturini, Modelling of particle-wall deposition in two-phase gas-solid flow [Ph.D. thesis], Sapienza Università di Roma, Rome, Italy, 2010.
  76. L. L. Baxter, Turbulent transport of particles [Ph.D. thesis], Brigham Young University, Provo, Utah, USA, 1989.
  77. W. Tabakoff, R. Kotwal, and A. Hamed, “Erosion study of different materials affected by coal ash particles,” Wear, vol. 52, pp. 161–173, 1979. View at Google Scholar
  78. A. Ghenaiet, “Numerical study of sand ingestion through a ventilating system,” in Proceedings of the World Congress on Engineering, vol. 2, London, UK, July 2009.
  79. L. He and J. D. Denton, “Three-dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blades,” Journal of Turbomachinery, vol. 116, no. 3, pp. 469–476, 1994. View at Google Scholar · View at Scopus
  80. J. G. Marshall and M. Imregun, “A review of aeroelasticity methods with emphasis on turbomachinery applications,” Journal of Fluids and Structures, vol. 10, no. 3, pp. 237–267, 1996. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Envia, A. G. Wilson, and D. L. Huff, “Fan noise: a challenge to CAA,” International Journal of Computational Fluid Dynamics, vol. 18, no. 6, pp. 471–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. F. R. Menter and Y. Egorov, “A scale-adaptive simulation model using two-equation models,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2005-1095, pp. 271–283, Reno, Nev, USA, January 2005. View at Scopus
  83. F. R. Menter and Y. Egorov, “The scale-adaptive simulation method for unsteady turbulent flow predictions, part 1: theory and model description,” Flow, Turbulence and Combustion, vol. 85, no. 1, pp. 113–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. F. R. Menter and Y. Egorov, “The scale-adaptive simulation method for unsteady turbulent flow predictions, part 2: application to complex flows,” Flow, Turbulence and Combustion, vol. 85, no. 1, pp. 139–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Borello, G. Delibra, K. Hanjalić, and F. Rispoli, “Large-eddy simulations of tip leakage and secondary flows in an axial compressor cascade using a near-wall turbulence model,” Proceedings of the Institution of Mechanical Engineers A, vol. 223, no. 6, pp. 645–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Davidson, “Large eddy simulation: a dynamic one-equation subgrid model for three-dimensional recirculating flow,” in Proceedings of the 11th International Symposium on Turbulent Shear Flow, vol. 3, pp. 26.1–26.6, Grenoble, France, 1997.
  87. H. Jasak, “OpenFOAM: a year in review,” in Proceedings of the 5th OpenFOAM Workshop, Gothenburg, Sweden, June 2010.
  88. A. Frederic, N. Mehitoua, and S. Marc, “Code_Saturne: a .finite volume code for the computation of turbulent incompressible flows—industrial applications,” IJFV International Journal on Finite Volumes, vol. 1, pp. 1–62, 2004. View at Google Scholar
  89. M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F. Wojtkiewicz, W. E. Hart, and M. P. Alleva, “DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis,” Sand Report SAND2001-3796, Sandia National Laboratories, Livermore, Calif, USA, 2002. View at Google Scholar
  90. I. Spisso, “HPC Enabling of OpenFOAM for CFD Applications,” in Parametric and Optimization Study: OpenFOAM and Dakota, Proceedings of Workshop, CINECA, Bologna, Italy, November 2012.