Table of Contents
ISRN Tribology
Volume 2013, Article ID 648524, 9 pages
http://dx.doi.org/10.5402/2013/648524
Research Article

Effect of Addition of Fine SiC Particles on the Dry Sliding Wear Behaviour of Extruded 2014 Al-Alloy

CSIR-AMPRI, Madhya Pradesh, Bhopal 462064, India

Received 17 October 2012; Accepted 11 November 2012

Academic Editors: V. P. Astakhov, N. Bagcivan, and M. Dienwiebel

Copyright © 2013 Rupa Dasgupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Harris, “Cast metal matrix composites,” Materials Science and Technology, vol. 4, no. 3, pp. 231–238, 1988. View at Google Scholar
  2. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Particulate reinforced metal matrix composites—a review,” Journal of Materials Science, vol. 26, no. 5, pp. 1137–1156, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Shin, D. Chung, and L. Sunghak, “The effect of consolidation temperature on microstructure and mechanical properties in powder metallurgy-processed 2XXX aluminum alloy composites reinforced with sic particulates,” Metallurgical and Materials Transactions A, vol. 28, no. 12, pp. 2625–2636, 1997. View at Google Scholar · View at Scopus
  4. C. S. Rao and G. S. Upadhyaya, “2014 and 6061 aluminium alloy-based powder metallurgy composites containing silicon carbide particles/fibres,” Materials and Design, vol. 16, no. 6, pp. 359–366, 1995. View at Google Scholar · View at Scopus
  5. O. P. Modi, A. H. Yegneswaran, R. Asthana, and P. K. Rohatgi, “Thermomechanical processing of aluminium-based particulate composites,” Journal of Materials Science, vol. 23, no. 1, pp. 83–92, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. P. K. Rohatgi, S. Das, and R. Asthana, “Science, technology and industrial potential of cast metal ceramic particle composites,” in Materials Science and Technology in the Future, pp. 123–184, CSIR, Bhopal, India, 1985. View at Google Scholar
  7. M. Rosso, “Ceramic and metal matrix composites: routes and properties,” Journal of Materials Processing Technology, vol. 175, no. 1–3, pp. 364–375, 2006. View at Publisher · View at Google Scholar
  8. D. B. Miracle, “Metal matrix composites—From science to technological significance,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2526–2540, 2005. View at Publisher · View at Google Scholar
  9. L. M. Tham, M. Gupta, and L. Cheng, “Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites,” Acta Materialia, vol. 49, no. 16, pp. 3243–3253, 2001. View at Publisher · View at Google Scholar
  10. A. J. Shakesheff and G. Purdue, “Designing metal matrix composites to meet their target: particulate reinforced aluminium alloys for missile applications,” Materials Science and Technology, vol. 14, no. 9-10, pp. 851–856, 1998. View at Google Scholar · View at Scopus
  11. E. M. Ruiz-Navas, M. L. Delgado, and J. M. Torralba, “Development of aluminium alloys and metal matrix composites by powder metallurgy,” in 4th International Conference on Materials and Manufacturing Technologies, MATEHN'06, pp. 51–58, rou, September 2006. View at Scopus
  12. M. Asif, K. Chandra, and P. S. Misra, “Development of aluminium based hybrid metal matrix composites for heavy duty applications,” Journal of Minerals and Materials Characterization and Engineering, vol. 10, no. 14, pp. 1337–1344, 2011. View at Google Scholar
  13. J. Jiang, C. Collado, D. Keeley, and B. Dodd, “Room temperature formability of particle-reinforced metal matrix composites: forging, extrusion and deep drawing,” Composites, vol. 26, no. 11, pp. 785–789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Rawal, “Metal-matrix composites for space applications,” Journal of Management, vol. 53, no. 4, pp. 14–17, 2001. View at Google Scholar · View at Scopus
  15. B. Dutta, I. Samajdar, and M. K. Surappa, “Particle redistribution and matrix microstructure evolution during hot extrusion of cast SiCp reinforced aluminium alloy matrix composites,” Materials Science and Technology, vol. 14, no. 1, pp. 36–46, 1998. View at Google Scholar · View at Scopus
  16. Y. H. Seo and C. G. Kang, “Effects of hot extrusion through a curved die on the mechanical properties of SiCp/Al composites fabricated by melt-stirring,” Composites Science and Technology, vol. 59, no. 5, pp. 643–654, 1999. View at Google Scholar · View at Scopus
  17. K. Hanada, Y. Murakoshi, H. Negishi, and T. Sano, “Microstructures and mechanical properties of Al-Li/SiCp composite produced by extrusion processing,” Journal of Materials Processing Technology, vol. 63, no. 1–3, pp. 405–410, 1997. View at Google Scholar · View at Scopus
  18. R. K. Goswami, R. Sikand, A. Dhar, O. P. Grover, U. C. Jindal, and A. K. Gupta, “Extrusion characteristics of aluminium alloy/SiCp metal matrix composites,” Materials Science and Technology, vol. 15, no. 4, pp. 443–449, 1999. View at Google Scholar · View at Scopus
  19. L. M. Tham, M. Gupta, and L. Cheng, “Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites,” Materials Science and Engineering A, vol. 326, no. 2, pp. 355–363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Flitta and T. Sheppard, “Nature of friction in extrusion process and its effect on material flow,” Materials Science and Technology, vol. 19, no. 7, pp. 837–846, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. K. Surappa, “On the nature of particle flow during extrusion of cast 6061 Al/SiCP composites,” Journal of Materials Science Letters, vol. 12, no. 16, pp. 1272–1273, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Abouelmagd, “Hot deformation and wear resistance of P/M aluminium metal matrix composites,” Journal of Materials Processing Technology, vol. 155-156, pp. 1395–1401, 2004. View at Google Scholar
  23. R. Dasgupta, S. Das, and A. K. Jha, “Sliding wear behaviour of Al-7075 based metal matrix composite: effect of processing parameters,” Key Engineering Materials, vol. 504-506, pp. 555–[60, 2012. View at Publisher · View at Google Scholar
  24. B. K. Prasad, K. Venkateswarlu, A. K. Jha et al., “Sliding wear response of an Al-Cu alloy: the influence of SiC particle reinforcement and test parameters,” Journal of Materials Science Letters, vol. 17, no. 13, pp. 1121–1123, 1998. View at Google Scholar · View at Scopus
  25. S. Das, D. P. Mondal, O. P. Modi, and R. Dasgupta, “Influence of experimental parameters on the erosive-corrosive wear of Al-SiC particle composite,” Wear, vol. 231, no. 2, pp. 195–205, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Dasgupta and H. Meenai, “Sliding wear properties of Al-Cu based alloys with SiC particle reinforced composites under varying experimental conditions,” Journal of Materials Science Letters, vol. 22, no. 22, pp. 1573–1576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Das, D. P. Mondal, R. Dasgupta, and B. K. Prasad, “Mechanisms of material removal during erosion-corrosion of an Al-SiC particle composite,” Wear, vol. 236, no. 1-2, pp. 295–302, 1999. View at Publisher · View at Google Scholar · View at Scopus