Table of Contents
ISRN Biomaterials
Volume 2013 (2013), Article ID 649163, 11 pages
http://dx.doi.org/10.5402/2013/649163
Research Article

Strontium Incorporated Coralline Hydroxyapatite for Engineering Bone

1Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
2Department of Orthopaedics, Shanghai Institute of Orthopaedics & Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 20025, China
3Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
4Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, 1017 Dong Min Bei Lu, Shenzhen 518020, China

Received 9 October 2012; Accepted 24 October 2012

Academic Editors: S. Lamponi, J. Wang, and X. Wang

Copyright © 2012 Waiching Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Goniopora was hydrothermally converted to coralline hydroxyapatite (CHA) and incorporated with Sr (Sr-CHA). The pore size of Goniopora was in the range of 40–300 μm with a porosity of about 68%. Surface morphologies of the coral were modified to flake-like hydroxyapatite structures on CHA and the addition of Sr detected on Sr-CHA as confirmed by SEM and EDX. As the first report of incorporating Sr into coral, about 6%–14% Sr was detected on Sr-CHA. The compressive strengths of CHA and Sr-CHA were not compromised due to the hydrothermal treatments. Sr-CHA was studied in vitro using MC3T3-E1 cells and in vivo with an ovariectomized rat model. The proliferation of MC3T3-E1 cells was significantly promoted by Sr-CHA as compared to CHA. Moreover, higher scaffold volume retention (+40%) was reported on the micro-CT analysis of the Sr-CHA scaffold. The results suggest that the incorporation of Sr in CHA can further enhance the osteoconductivity and osteoinductivity of corals. Strontium has been suggested to stimulate bone growth and inhibit bone resorption. In this study, we have successfully incorporated Sr into CHA with the natural porous structure remained and explored the idea of Sr-CHA as a potential scaffolding material for bone regeneration.