Table of Contents
ISRN Biomaterials
Volume 2013 (2013), Article ID 649163, 11 pages
http://dx.doi.org/10.5402/2013/649163
Research Article

Strontium Incorporated Coralline Hydroxyapatite for Engineering Bone

1Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
2Department of Orthopaedics, Shanghai Institute of Orthopaedics & Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 20025, China
3Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
4Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, 1017 Dong Min Bei Lu, Shenzhen 518020, China

Received 9 October 2012; Accepted 24 October 2012

Academic Editors: S. Lamponi, J. Wang, and X. Wang

Copyright © 2012 Waiching Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Burchardt, “The biology of bone graft repair,” Clinical Orthopaedics and Related Research, vol. 174, pp. 28–42, 1983. View at Google Scholar · View at Scopus
  2. E. M. Younger and M. W. Chapman, “Morbidity at bone graft donor sites,” Journal of Orthopaedic Trauma, vol. 3, no. 3, pp. 192–195, 1989. View at Google Scholar · View at Scopus
  3. C. Demers, C. Reggie Hamdy, K. Corsi, F. Chellat, M. Tabrizian, and L. Yahia, “Natural coral exoskeleton as a bone graft substitute: a review,” Bio-Medical Materials and Engineering, vol. 12, no. 1, pp. 15–35, 2002. View at Google Scholar · View at Scopus
  4. B. Ben-Nissan, “Natural bioceramics: from coral to bone and beyond,” Current Opinion in Solid State and Materials Science, vol. 7, no. 4-5, pp. 283–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Cusack and A. Freer, “Biomineralization: elemental and organic influence in carbonate systems,” Chemical Reviews, vol. 108, no. 11, pp. 4433–4454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Roy and S. K. Linnehan, “Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange,” Nature, vol. 247, no. 5438, pp. 220–222, 1974. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Ambard and L. Mueninghoff, “Calcium phosphate cement: review of mechanical and biological properties,” Journal of Prosthodontics, vol. 15, no. 5, pp. 321–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. C. Shors, “Coralline bone graft substitutes,” Orthopedic Clinics of North America, vol. 30, no. 4, pp. 599–613, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhang, Y. Shen, H. Pan et al., “Effects of strontium in modified biomaterials,” Acta Biomaterialia, vol. 7, no. 2, pp. 800–808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S.-R. Kim, Y. H. Kim, Y. J. Lee, H.-J. Kim, S.-J. Jung, and H. Song, “Porous hydroxyapatite containing silicon and magnesium, and a preparation method thereof,” in USPO, Korea Institute of Ceramic Engineering and Technology, Meta Biomed Co. Ltd., Horsham, Pa, USA, 2006. View at Google Scholar
  12. H. Zreiqat, Y. Ramaswamy, C. Wu et al., “The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering,” Biomaterials, vol. 31, no. 12, pp. 3175–3184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Wu, Y. Ramaswamy, P. Boughton, and H. Zreiqat, “Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(d,l-lactic acid) modification,” Acta Biomaterialia, vol. 4, no. 2, pp. 343–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. W. Kim, J. C. Knowles, and H. E. Kim, “Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release,” Journal of Materials Science, vol. 16, no. 3, pp. 189–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, “45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 11, pp. 2414–2425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Hodgskinsony, C. Njehz, M. Whiteheadx, and C. Langton, “The non-linear relationship between BUA and porosity in cancellous bone,” hysics in Medicine and Biology, vol. 41, no. 11, pp. 2411–2420, 1996. View at Publisher · View at Google Scholar
  17. T. M. Keaveny, “Strength of trabecular bone,” in Bone Mechanics Handbook, S. C. Cowin, Ed., CRC Press, Boca Raton, Fla, USA, 2nd edition, 2001. View at Google Scholar
  18. J. Rho, “Hard tissues, mechanical properties,” in Encyclopedia of Materials: Science and Technology, J. K. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan et al., Eds., pp. 3723–3728, Elsevier, Amsterdam, The Netherlands, 2001. View at Google Scholar
  19. A. Meibom, J. P. Cuif, F. Houlbreque et al., “Compositional variations at ultra-structure length scales in coral skeleton,” Geochimica et Cosmochimica Acta, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Roudier, C. Bouchon, J. L. Rouvillain et al., “The resorption of bone-implanted corals varies with porosity but also with the host reaction,” Journal of Biomedical Materials Research, vol. 29, no. 8, pp. 909–915, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Davies, “Bone bonding at natural and biomaterial surfaces,” Biomaterials, vol. 28, no. 34, pp. 5058–5067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. C. Wu, T. M. Lee, K. H. Chiu, S. Y. Shaw, and C. Y. Yang, “A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds,” Journal of Materials Science, vol. 20, no. 6, pp. 1273–1280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pollick, E. C. Shors, R. E. Holmes, R. A. Kraut, and J. Glowacki, “Bone formation and implant degradation of coralline porous ceramics placed in bone and ectopic sites,” Journal of Oral and Maxillofacial Surgery, vol. 53, no. 8, pp. 915–923, 1995. View at Google Scholar · View at Scopus
  24. K. S. Vecchio, “Conversion of sea-shells and other calcite-based materials with dense structures into synthetic materials for implants and other structures and devices,” in USPO, 2007. View at Google Scholar
  25. J. P. Cuif and Y. Dauphin, “The Environment Recording Unit in coral skeletons-a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres,” Biogeosciences, vol. 2, no. 1, pp. 61–73, 2005. View at Google Scholar · View at Scopus
  26. J.-P. Cuif and Y. Dauphin, “The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale,” Journal of Structural Biology, vol. 150, no. 3, pp. 319–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Przeniosło, J. Stolarski, M. Mazur, and M. Brunelli, “Hierarchically structured scleractinian coral biocrystals,” Journal of Structural Biology, vol. 161, no. 1, pp. 74–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Mygind, M. Stiehler, A. Baatrup et al., “Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds,” Biomaterials, vol. 28, no. 6, pp. 1036–1047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. V. Dorozhkin, “Calcium orthophosphates in nature, biology and medicine,” Materials, vol. 2, no. 2, pp. 399–498, 2009. View at Publisher · View at Google Scholar
  30. Y. Xu, D. Wang, L. Yang, and H. Tang, “Hydrothermal conversion of coral into hydroxyapatite,” Materials Characterization, vol. 47, no. 2, pp. 83–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Hu, R. Fraser, J. Russell, R. Vago, and B. Ben-Nissan, “Australian coral as a biomaterial: characteristics,” Journal of Materials Science & Technology, vol. 16, no. 2, pp. 591–595, 2000. View at Google Scholar
  32. Z. Y. Li, W. M. Lam, C. Yang et al., “Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite,” Biomaterials, vol. 28, no. 7, pp. 1452–1460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction To Materials in Medicine, Elsevier, Amsterdam, The Netherlands, 2nd edition, 2004.
  34. S. Yoshioka and Y. Ktiano, “Transformation of aragonite to calcite through heating,” Geochemical Journal, vol. 19, no. 4, pp. 245–249, 1985. View at Publisher · View at Google Scholar
  35. J. Fricain, R. Bareille, F. Ulysse, B. Dupuy, and J. Amedee, “Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form,” Journal of Biomedical Materials Research A, vol. 42, no. 1, pp. 96–102, 1998. View at Publisher · View at Google Scholar
  36. J. Hu, J. J. Russell, B. Ben-Nissan, and R. Vago, “Production and analysis of hydroxyapatite from Australian corals via hydrothermal process,” Journal of Materials Science Letters, vol. 20, no. 1, pp. 85–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Murugan and S. Ramakrishna, “Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite,” Biomaterials, vol. 25, no. 15, pp. 3073–3080, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Holmes, V. Mooney, R. Bucholz, and A. Tencer, “A coralline hydroxyapatite bone graft substitute. Preliminary report,” Clinical Orthopaedics and Related Research, vol. 188, pp. 252–262, 1984. View at Google Scholar · View at Scopus
  39. J. Vuola, R. Taurio, H. Göransson, and S. Asko-Seljavaara, “Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis,” Biomaterials, vol. 19, no. 1–3, pp. 223–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Chamberlain, “Mechanical properties of coral skeleton: compressive strength and its adaptive significance,” Palebiology, vol. 4, no. 4, pp. 419–435, 1978. View at Google Scholar
  41. M. F. Sciadini, J. M. Dawson, and K. D. Johnson, “Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model,” Journal of Orthopaedic Research, vol. 15, no. 6, pp. 844–857, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Petite, V. Viateau, W. Bensaïd et al., “Tissue-engineered bone regeneration,” Nature Biotechnology, vol. 18, no. 9, pp. 959–963, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Geiger, H. Lorenz, W. Xu et al., “VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute,” Bone, vol. 41, no. 4, pp. 516–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Q. Cui, W. M. Mihalko, J. S. Shields, M. Ries, and K. J. Saleh, “Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 89, no. 4, pp. 871–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Z. LeGeros, “Properties of osteoconductive biomaterials: calcium phosphates,” Clinical Orthopaedics and Related Research, no. 395, pp. 81–98, 2002. View at Google Scholar · View at Scopus