Table of Contents
ISRN Organic Chemistry
Volume 2013, Article ID 656185, 7 pages
http://dx.doi.org/10.1155/2013/656185
Research Article

Noncovalent Functionalization of Graphene in Suspension

1Department of Chemistry-BMC, Uppsala University, P.O. Box 576, 751 23 Uppsala, Sweden
2Department of Engineering Sciences, Electron Microscopy and Nanoengineering, Uppsala University, P.O. Box 534, 751 21 Uppsala, Sweden

Received 31 January 2013; Accepted 3 March 2013

Academic Editors: J. Drabowicz, N. Fujita, G. Giambastiani, and A. Hajra

Copyright © 2013 Wenzhi Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angewandte Chemie—International Edition, vol. 48, no. 42, pp. 7752–7777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Grennberg and U. Jansson, “Synthesis of graphene and derivatives,” in Advanced Functional Materials, a Perspective from Theory and Experimen, B. Sanyal and O. Eriksson, Eds., Elsevier, New York, NY, USA, 2012. View at Google Scholar
  5. J. Wu, W. Pisula, and K. Müllen, “Graphenes as potential material for electronics,” Chemical Reviews, vol. 107, no. 3, pp. 718–747, 2007. View at Publisher · View at Google Scholar
  6. K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials, vol. 8, no. 3, pp. 203–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surface Science, vol. 264, no. 3, pp. 261–270, 1992. View at Google Scholar · View at Scopus
  8. A. Nagashima, “Electronic states of monolayer graphite formed on TiC(111) surface,” Surface Science, vol. 291, no. 1-2, pp. 93–98, 1993. View at Publisher · View at Google Scholar
  9. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science, vol. 319, no. 5867, pp. 1229–1232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Widenkvist, D. W. Boukhvalov, S. Rubino et al., “Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene,” Journal of Physics D, vol. 42, no. 11, Article ID 112003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hernandez, V. Nicolosi, M. Lotya et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, vol. 3, no. 9, pp. 563–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Chemical Reviews, vol. 106, no. 3, pp. 1105–1136, 2006. View at Publisher · View at Google Scholar
  14. V. Georgakilas, M. Otyepka, A. B. Bourlinos et al., “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chemical Reviews, vol. 112, pp. 6156–6214, 2012. View at Publisher · View at Google Scholar
  15. S. Gou and S. Dong, “Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications,” Chemical Society Reviews, vol. 40, pp. 2644–2672, 2011. View at Publisher · View at Google Scholar
  16. V. A. Colman, R. Knut, O. Karis et al., “Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study,” Journal of Physics D, vol. 41, Article ID 062001, 2008. View at Publisher · View at Google Scholar
  17. B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, “Molecular adsorption in graphene with divacancy defects,” Physical Review B, vol. 79, no. 11, Article ID 113409, 4 pages, 2009. View at Publisher · View at Google Scholar
  18. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, “Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization,” Journal of the American Chemical Society, vol. 123, no. 16, pp. 3838–3839, 2001. View at Publisher · View at Google Scholar
  19. E. M. Pérze, A. L. Capodilupo, G. Fernández et al., “Weighting non-covalent forces in the molecular recognition of C60. Relevance of concave-convex complementarity,” Chemical Communications, no. 38, pp. 4567–4569, 2008. View at Google Scholar
  20. K. S. Subrahmanyam, A. Ghosh, A. Gomathi, A. Govindaraj, and C. N. R. Rao, “Covalent and noncovalent functionalization and solubilization of graphene,” Nanoscience and Nanotechnology Letters, vol. 1, no. 1, pp. 28–31, 2009. View at Publisher · View at Google Scholar
  21. A. Ghosh, K. V. Rao, S. J. George, and C. N. R. Rao, “Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate,” Chemistry—A European Journal, vol. 16, pp. 2700–2704, 2010. View at Publisher · View at Google Scholar
  22. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets,” Journal of the American Chemical Society, vol. 130, no. 18, pp. 5856–5857, 2008. View at Publisher · View at Google Scholar
  23. X. Wang, S. M. Tabakman, and H. Dai, “Atomic layer deposition of metal oxides on pristine and functionalized graphene,” Journal of the American Chemical Society, vol. 130, no. 26, pp. 8152–8153, 2008. View at Publisher · View at Google Scholar
  24. J. Lin, D. Teweldebrhan, K. Ashraf et al., “Gating of single-layer graphene with single-stranded deoxyribonucleic acids,” Small, vol. 6, no. 10, pp. 1150–1155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Pollard, E. W. Perkins, N. A. Smith et al., “Supramolecular assemblies formed on an epitaxial graphene superstructure,” Angewandte Chemie—International Edition, vol. 49, no. 10, pp. 1794–1799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, J. Zheng, H.-L. Zhang, and Y. Peng, “Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms,” Nanotechnology, vol. 21, no. 6, Article ID 065201, 2010. View at Publisher · View at Google Scholar
  27. A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Letters, vol. 9, pp. 4031–4036, 2009. View at Publisher · View at Google Scholar
  28. R. Heindla and W. H. Rippard, “Emerging devices based on spin transfer torque effect,” ECS Transactions, vol. 19, pp. 21–32, 2009. View at Google Scholar
  29. M. Zhang, R. R. Parajuli, D. Mastrogiovanni et al., “Production of graphene sheets by direct dispersion with aromatic healing agents,” Small, vol. 6, no. 10, pp. 1100–1107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Borsato, F. D. Negra, F. Gasparrini et al., “Internal motions in a fulleropyrrolidine tertiary amide with axial chirality,” Journal of Organic Chemistry, vol. 69, no. 17, pp. 5785–5788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. W. Smith, M. Monthioux, and D. E. Luzzi, “Encapsulated C60 in carbon nanotubes,” Nature, vol. 396, no. 6709, pp. 323–324, 1998. View at Google Scholar · View at Scopus
  32. Z. Liu, M. Koshino, K. Suenaga, A. Mrzel, H. Kataura, and S. Iijima, “Transmission electron microscopy imaging of individual functional groups of fullerene derivatives,” Physical Review Letters, vol. 96, no. 8, Article ID 088304, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Kozlov, F. Viñes, and A. G. Görling, “On the interaction of polycyclic aromatic compounds with graphene,” Carbon, vol. 50, no. 7, pp. 2482–2492, 2012. View at Publisher · View at Google Scholar
  34. K. Chajara, C.-H. Andersson, E. Widenkvist, and H. Grennberg, “The reagent-free, microwave-assisted purification of carbon nanotubes,” New Journal of Chemistry, vol. 34, pp. 2275–2280, 2010. View at Publisher · View at Google Scholar
  35. W. Yang, E. Widenkvist, U. Jansson, and H. Grennberg, “Stirring-induced aggregation of graphene in suspension,” New Journal of Chemistry, vol. 35, no. 4, pp. 780–783, 2011. View at Publisher · View at Google Scholar · View at Scopus