Table of Contents
ISRN Materials Science
Volume 2013, Article ID 670130, 19 pages
Review Article

Singlet Generation from Triplet Excitons in Fluorescent Organic Light-Emitting Diodes

Organic Electroactive Materials Research Group, Department of Physics, University of Durham, Durham DH1 3LE, UK

Received 22 August 2012; Accepted 4 October 2012

Academic Editors: I. A. Hümmelgen and E. J. Nassar

Copyright © 2013 A. P. Monkman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A potential major drawback with organic light-emitting devices, (OLEDs) is the limit of 25% singlet exciton production through spin-dependent charge recombination. Recent device results, however, show that this limit does not hold and far higher efficiencies can be achieved in purely fluorescent-based systems (Wohlgenannt et al. (2001), Dhoot et al. (2002), Lin et al. (2003), Wilson et al. (2001), Cao et al. (1999), Baldo et al. (1999), and Kim et al. (2000)). Thus, the question arises; is recombination spin dependent (Tandon et al. (2003)) or are singlet excitons generated in secondary processes? Direct measurement of the singlet generation rate in working devices of 44% has been shown (Rothe et al. (2006)), which have been verified as being part due to direct singlets formed on recombination and part from triplet fusion, singlets produced during triplet annihilation (Kondakov et al. (2009), King et al. (2011), and Zhang and Forrest (2012)). Here, the various routes by which triplet excitons can generate singlet states are discussed and their relative contributions to the overall electroluminescence yield are given. The materials requirements to obtain maximum singlet production from triplet states are discussed. These triplet contributions can give very high device yields for fluorescent emitters, which in the case of blue devices can be highly advantageous. Further, new devices architectures open up which are simple and have intrinsically low turn on voltages, ideal for large-area OLED lighting applications.