Table of Contents
ISRN Robotics
Volume 2013 (2013), Article ID 672826, 8 pages
http://dx.doi.org/10.5402/2013/672826
Research Article

Collision-Detecting Device for Omnidirectional Electric Wheelchair

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan

Received 9 October 2012; Accepted 1 November 2012

Academic Editors: A. Bechar, A. Sabanovic, and K.-T. Song

Copyright © 2013 Shuichi Ishida and Hiroyuki Miyamoto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. E. Ilon, “Wheels for a course stable self propelling vehicle movable in any desired direction on the ground or some other base,” United States Patent 3, 876, 255, 1975. View at Google Scholar
  2. S. Ishida and H. Miyamoto, “Holonomic omnidirectional vehicle with ball wheel drive mechanism,” Transactions of the Japan Society of Mechanical Engineers C, vol. 78, no. 790, pp. 2162–2170, 2012. View at Google Scholar
  3. K. Yamada, T. Miyamoto, and S. Usui, “A study on a holonomic omnidirectional vehicle using 4 ball wheels,” Transactions of the Japan Society of Mechanical Engineers C, vol. 71, no. 708, pp. 2557–2562, 2005. View at Google Scholar · View at Scopus
  4. K. Tadakuma, R. Tadakuma, and J. Berengeres, “Development of holonomic omnidirectional vehicle with “Omni-Ball”: spherical wheels,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), pp. 33–39, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Wada and H. H. Asada, “Design and control of a variable footprint mechanism for holonomic omnidirectional vehicles and its application to wheelchairs,” IEEE Transactions on Robotics and Automation, vol. 15, no. 6, pp. 978–989, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. N. I. Katevas, N. M. Sgours, S. G. Tzafestas et al., “The autonomous mobile robot SENARIO: a sensor-aided intelligent navigation system for powered wheelchairs,” IEEE Robotics and Automation Magazine, vol. 4, no. 4, pp. 60–69, 1997. View at Google Scholar · View at Scopus
  7. H. A. Yanco, “Wheelesley: a robotic wheelchair system: indoor navigation and user interface,” in Assistive Technology and Artificial Intelligence, vol. 1458 of Lecture Notes in Artificial Intelligence, pp. 256–268, 1998. View at Google Scholar
  8. Y. Matsumoto, T. Ino, and T. Ogasawara, “Development of intelligent wheelchair system with face and gaze based interface,” in Proceeding of the 10th IEEE International Workshop on Robot and Human Communication, pp. 262–267, September 2001. View at Scopus
  9. Y. Kuno, N. Shimada, and Y. Shirai, “Look where you're going,” IEEE Robotics and Automation Magazine, vol. 10, no. 1, pp. 26–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Miller and M. G. Slack, “Design and testing of a low-cost robotic wheelchair prototype,” Autonomous Robots, vol. 2, no. 1, pp. 77–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Borgolte, H. Hoyer, C. Bühler, H. Heck, and R. Hoelper, “Architectural concepts of a semi-autonomous wheelchair,” Journal of Intelligent and Robotic Systems, vol. 22, no. 3-4, pp. 233–253, 1998. View at Google Scholar · View at Scopus
  12. J. D. Yoder, E. T. Baumgartner, and S. B. Skaar, “Initial results in the development of a guidance system for a powered wheelchair,” IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 3, pp. 143–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Simpson, E. LoPresti, S. Hayashi, I. Nourbakhsh, and D. Miller, “The smart wheelchair component system,” Journal of Rehabilitation Research and Development, vol. 41, no. 3, pp. 429–442, 2004. View at Google Scholar · View at Scopus
  14. R. C. Simpson, “Smart wheelchairs: a literature review,” Journal of Rehabilitation Research and Development, vol. 42, no. 4, pp. 423–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Lankenau and T. Röfer, “A versatile and safe mobility assistant,” IEEE Robotics and Automation Magazine, vol. 8, no. 1, pp. 29–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Protho, D. Poirot, and D. M. Brienza, “An evaluation of an obstacle avoidance force feedback joystick,” in Proceedings of the 23th Annual RESNA Conference, 2000.
  17. Y. Yagi, S. Kawato, and S. Tsuji, “Real-time omnidirectional image sensor (COPIS) for vision-guided navigation,” IEEE Transactions on Robotics and Automation, vol. 10, no. 1, pp. 11–22, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Mandel, K. Huebner, and T. Vierhuff, “Towards an autonomous wheelchair: cognitive aspects in service robotics,” in Proceedings of the Towards Autonomous Robotics Systems (TAROS '05), pp. 165–172, 2005.
  19. J. Kurata, K. T. V. Grattan, and H. Uchiyama, “Navigation system for a mobile robot with a visual sensor using a fish-eye lens,” Review of Scientific Instruments, vol. 69, no. 1-2, pp. 585–590, 1998. View at Google Scholar · View at Scopus
  20. Y. Satoh and K. Sakaue, “An omnidirectional stereo vision-based smart wheelchair,” Eurasip Journal on Image and Video Processing, vol. 2007, Article ID 87646, 11 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus