Table of Contents
ISRN Materials Science
Volume 2013, Article ID 682516, 7 pages
Research Article

Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of Nanotube Anode

1Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606, USA
2Department of Mechanical Engineering, California State Polytechnic University-Pomona, 3801 W Temple Avenue, Pomona, CA 91768, USA
3Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 7 February 2013; Accepted 20 February 2013

Academic Editors: S. Kirihara and A. O. Neto

Copyright © 2013 Kai Ren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The photoelectrochemical responses of a TiO2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na2S electrolytes with different concentrations were investigated. The TiO2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na2S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage is also an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na2S solutions did not show obvious concentration effect.