Table of Contents
ISRN Mechanical Engineering
Volume 2013, Article ID 682586, 19 pages
http://dx.doi.org/10.1155/2013/682586
Review Article

Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA

Received 20 November 2012; Accepted 7 December 2012

Academic Editors: Y. He, T. Ohara, and Z. Yu

Copyright © 2013 Patrick E. Hopkins. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Lawrence Livermore National Laboratory, Livermore, Calif, USA 94550, LLNL Energy Flow Chart, https://flowcharts.llnl.gov/.
  2. “EPA report on clean energy and air emissions [online],” http://www.epa.gov/cleanenergy/energy-and-you/affect/air-emissions.html.
  3. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Magazine, vol. 38, p. 4, 1965. View at Google Scholar
  4. E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Research, vol. 3, no. 3, pp. 147–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Cahill, W. K. Ford, K. E. Goodson et al., “Nanoscale thermal transport,” Journal of Applied Physics, vol. 93, no. 2, pp. 793–818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Hendricks and W. T. Choate, “Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery,” Tech. Rep., Pacific Northwest National Laboratory and BCS, 2006. View at Google Scholar
  7. K. Yazawa and A. Shakouri, “Cost-efficiency trade-off and the design of thermoelectric power generators,” Environmental Science and Technology, vol. 45, pp. 7548–7553, 2011. View at Publisher · View at Google Scholar
  8. M. S. Dresselhaus, G. Dresselhaus, X. Sun et al., “The promise of low-dimensional thermoelectric materials,” Microscale Thermophysical Engineering, vol. 3, no. 2, pp. 89–100, 1999. View at Google Scholar · View at Scopus
  9. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Progress in Photovoltaics, vol. 19, pp. 631–639, 2011. View at Publisher · View at Google Scholar
  10. T. Kietzke, “Recent advances in organic solar cells,” Advances in OptoElectronics, vol. 2007, Article ID 40285, 15 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. N. Smith and J. P. Calame, “Impact of thin film thermophysical properties on thermal management of wide bandgap solid-state transistors,” International Journal of Thermophysics, vol. 25, no. 2, pp. 409–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials, vol. 7, no. 2, pp. 105–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Poudel, Q. Hao, Y. Ma et al., “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, no. 5876, pp. 634–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. I. Hochbaum, R. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature, vol. 451, no. 7175, pp. 168–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York, NY, USA, 2005.
  17. E. T. Swartz and R. O. Pohl, “Thermal boundary resistance,” Reviews of Modern Physics, vol. 61, no. 3, pp. 605–668, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. P. L. Kapitza, “The study of heat transfer in Helium II,” Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, p. 1, 1941. View at Google Scholar
  19. P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, “Controlling thermal conductance through quantum dot roughening at interfaces,” Physical Review B, vol. 84, no. 3, Article ID 035438, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Physical Review B, vol. 82, no. 8, Article ID 085307, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Duda and P. E. Hopkins, “Systematically controlling Kapitza conductance via chemical etching,” Applied Physics Letters, vol. 100, no. 11, Article ID 111602, 4 pages, 2012. View at Publisher · View at Google Scholar
  22. P. E. Hopkins, P. M. Norris, R. J. Stevens, T. E. Beechem, and S. Graham, “Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface,” Journal of Heat Transfer, vol. 130, no. 6, Article ID 062401, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. E. Hopkins, J. C. Duda, S. P. Clark et al., “Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces,” Applied Physics Letters, vol. 98, no. 16, Article ID 161913, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P. E. Hopkins, M. Baraket, E. V. Barnat et al., “Manipulating thermal conductance at metal-graphene contacts via chemical functionalization,” Nano Letters, vol. 12, pp. 590–595, 2012. View at Publisher · View at Google Scholar
  25. D. G. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” Journal of Heat Transfer, vol. 124, no. 2, pp. 223–241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. G. Cahill, “Extremes of heat conduction? Pushing the boundaries of the thermal conductivity of materials,” MRS Bulletin, vol. 37, pp. 855–863, 2012. View at Publisher · View at Google Scholar
  27. R. B. Wilson and D. G. Cahill, “Experimental validation of the interfacial form of the wiedemann-franz law,” Physical Review Letters, vol. 108, Article ID 255901, 5 pages, 2012. View at Publisher · View at Google Scholar
  28. B. C. Gundrum, D. G. Cahill, and R. S. Averback, “Thermal conductance of metal-metal interfaces,” Physical Review B, vol. 72, no. 24, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Physical Review B, vol. 67, no. 5, Article ID 054302, 5 pages, 2003. View at Google Scholar · View at Scopus
  30. H. K. Lyeo and D. G. Cahill, “Thermal conductance of interfaces between highly dissimilar materials,” Physical Review B, vol. 73, no. 14, Article ID 144301, 6 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3ω method,” Review of Scientific Instruments, vol. 61, no. 2, article 802, 7 pages, 1990. View at Publisher · View at Google Scholar
  32. Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, “Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films,” Journal of Applied Physics, vol. 63, no. 5, article 1442, 6 pages, 1988. View at Publisher · View at Google Scholar
  33. L. M. Phinney, E. S. Piekos, and J. D. Kuppers, “Bond pad effects on steady state thermal conductivity measurement using suspended micromachined test structures,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '07), vol. 41349, Seattle, Wash, USA, 2007.
  34. S. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” International Journal of Thermophysics, vol. 22, no. 2, pp. 605–616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. D. McConnell, S. Uma, and K. E. Goodson, “Thermal conductivity of doped polysilicon layers,” Journal of Microelectromechanical Systems, vol. 10, no. 3, pp. 360–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Applied Physics Letters, vol. 83, no. 14, article 2934, 3 pages, 2003. View at Google Scholar
  37. Z. Chen, W. Jang, W. Bao, C. N. Lau, and C. Dames, “Thermal contact resistance between graphene and silicon dioxide,” Applied Physics Letters, vol. 95, no. 16, Article ID 161910, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Lu, W. Yi, and D. L. Zhang, “3 ω method for specific heat and thermal conductivity measurements,” Review of Scientific Instruments, vol. 72, no. 7, pp. 2996–3003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Tong and A. Majumdar, “Reexamining the 3-omega technique for thin film thermal characterization,” Review of Scientific Instruments, vol. 77, no. 10, Article ID 104902, 9 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Bauer, C. M. Bauer, M. C. Fish et al., “Thin-film aerogel thermal conductivity measurements via 3ω,” Journal of Non-Crystalline Solids, vol. 357, no. 15, pp. 2960–2965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. W. Olson, S. Graham, and K. Chen, “A practical extension of the 3ω method to multilayer structures,” Review of Scientific Instruments, vol. 76, no. 5, Article ID 053901, 7 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. P. E. Hopkins and L. M. Phinney, “Thermal conductivity measurements on polycrystalline silicon microbridges using the 3ω technique,” Journal of Heat Transfer, vol. 131, no. 4, Article ID 043201, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. H. Seol, I. Jo, A. L. Moore et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Shi, D. Li, C. Yu et al., “Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device,” Journal of Heat Transfer, vol. 125, no. 5, pp. 881–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, New York, NY, US, 2nd edition, 1959.
  46. H. W. Deem and W. D. Wood, “Flash thermal-diffusivity measurements using a laser,” Review of Scientific Instruments, vol. 33, no. 10, pp. 1107–1109, 1962. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Guo, X. Wang, and T. Wang, “Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique,” Journal of Applied Physics, vol. 101, no. 6, Article ID 063537, 7 pages, 2007. View at Publisher · View at Google Scholar
  48. C. A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” Journal of Applied Physics, vol. 60, no. 1, pp. 285–290, 1986. View at Publisher · View at Google Scholar · View at Scopus
  49. G. L. Eesley, “Observation of nonequilibrium electron heating in copper,” Physical Review Letters, vol. 51, no. 23, pp. 2140–2143, 1983. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Weaver, D. W. Lynch, C. H. Culp, and R. Rosei, “Thermoreflectance of V, Nb, and paramagnetic Cr,” Physical Review B, vol. 14, no. 2, pp. 459–463, 1976. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Colavita, A. Franciosi, D. W. Lynch, G. Paolucci, and R. Rosei, “Thermoreflectance investigation of the antiferromagnetic and paramagnetic phases of Cr,” Physical Review B, vol. 27, no. 3, pp. 1653–1663, 1983. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Physical Review B, vol. 27, no. 8, pp. 4684–4693, 1983. View at Publisher · View at Google Scholar · View at Scopus
  53. D. W. Lynch, R. Rosei, and J. H. Weaver, “Infrared and visible optical properties of single crystal Ni at 4K,” Solid State Communications, vol. 9, no. 24, pp. 2195–2199, 1971. View at Google Scholar · View at Scopus
  54. R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au, and Cu,” Physical Review B, vol. 5, no. 10, pp. 3883–3894, 1972. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the fermi surface in Ag: experimental,” Physical Review B, vol. 10, no. 2, pp. 484–489, 1974. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Rosei, “Temperature modulation of the optical transitions involving the fermi surface in Ag: theory,” Physical Review B, vol. 10, no. 2, pp. 474–483, 1974. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Hostetler, A. N. Smith, and P. M. Norris, “Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics,” Microscale Thermophysical Engineering, vol. 1, no. 3, pp. 237–244, 1997. View at Google Scholar · View at Scopus
  58. W. P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” Journal of Applied Physics, vol. 109, no. 11, Article ID 113520, 4 pages, 2011. View at Publisher · View at Google Scholar
  59. Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” Journal of Applied Physics, vol. 108, no. 4, Article ID 043507, 4 pages, 2010. View at Publisher · View at Google Scholar
  60. P. E. Hopkins, “Effects of electron-boundary scattering on changes in thermoreflectance in thin metal films undergoing intraband excitations,” Journal of Applied Physics, vol. 105, no. 9, Article ID 093517, 6 pages, 2009. View at Publisher · View at Google Scholar
  61. G. L. Eesley, “Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses,” Physical Review B, vol. 33, no. 4, pp. 2144–2151, 1986. View at Publisher · View at Google Scholar · View at Scopus
  62. P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Review of Scientific Instruments, vol. 74, no. 1, pp. 400–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, “Thermal characterization of Bi2Te3/Sb2Te3 superlattices,” Journal of Applied Physics, vol. 90, no. 2, pp. 763–767, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. P. M. Norris and P. E. Hopkins, “Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance,” Journal of Heat Transfer, vol. 131, no. 4, Article ID 043207, 11 pages, 2009. View at Publisher · View at Google Scholar
  65. A. J. Schmidt, X. Chen, and G. Chen, “Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance,” Review of Scientific Instruments, vol. 79, no. 11, Article ID 114902, 9 pages, 2008. View at Publisher · View at Google Scholar
  66. P. E. Hopkins, J. R. Serrano, L. M. Phinney, S. P. Kearney, T. W. Grasser, and C. Thomas Harris, “Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating,” Journal of Heat Transfer, vol. 132, no. 8, Article ID 081302, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. P. E. Hopkins, B. Kaehr, L. M. Phinney et al., “Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance,” Journal of Heat Transfer, vol. 133, no. 6, Article ID 061601, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. K. Koh, S. L. Singer, W. Kim et al., “Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors,” Journal of Applied Physics, vol. 105, no. 5, Article ID 054303, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Review of Scientific Instruments, vol. 75, no. 12, pp. 5119–5122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Soviet Physics, vol. 39, pp. 375–377, 1974. View at Google Scholar
  71. P. E. Hopkins, J. M. Klopf, and P. M. Norris, “Influence of interband transitions on electron-phonon coupling measurements in Ni films,” Applied Optics, vol. 46, no. 11, pp. 2076–2083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. P. E. Hopkins, L. M. Phinney, and J. R. Serrano, “Re-examining electron-fermi relaxation in gold films with a nonlinear thermoreflectance model,” Journal of Heat Transfer, vol. 133, no. 4, Article ID 044505, 4 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” Journal of Applied Physics, vol. 105, no. 2, Article ID 023710, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Applied Surface Science, vol. 253, no. 15, pp. 6289–6294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. P. E. Hopkins, “Influence of inter- and intraband transitions to electron temperature decay in noble metals after short-pulsed laser heating,” Journal of Heat Transfer, vol. 132, no. 12, Article ID 122402, 6 pages, 2010. View at Publisher · View at Google Scholar
  76. P. E. Hopkins, “Contributions of inter- and intraband excitations to electron heat capacity and electron-phonon coupling in noble metals,” Journal of Heat Transfer, vol. 132, no. 1, Article ID 014504, 4 pages, 2010. View at Google Scholar
  77. J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chemical Physics, vol. 251, no. 1–3, pp. 237–258, 2000. View at Google Scholar · View at Scopus
  78. T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Journal of Heat Transfer, vol. 115, no. 4, article 835, 7 pages, 1993. View at Publisher · View at Google Scholar
  79. T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” Journal of Heat Transfer, vol. 115, no. 4, article 842, 6 pages, 1993. View at Publisher · View at Google Scholar
  80. A. Caffrey, P. Hopkins, J. Klopf, and P. Norris, “Thin film non-noble transition metal thermophysical properties,” Nanoscale and Microscale Thermophysical Engineering, vol. 9, no. 4, pp. 365–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Review of Scientific Instruments, vol. 80, no. 9, Article ID 094901, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. H. S. Carslaw and J. C. Jaeger, “Steady periodic temperature in composite slabs,” in Conduction of Heat in Solids, pp. 109–112, Oxford University Press, New York, NY, USA, 2nd edition, 2003. View at Google Scholar
  83. A. Feldman, “Algorithm for solutions of the thermal diffusion equation in a stratified medium with a modulated heating source,” High Temperatures, vol. 31, no. 3, pp. 293–296, 1999. View at Google Scholar · View at Scopus
  84. A. Schmidt, M. Chiesa, X. Chen, and G. Chen, “An optical pump-probe technique for measuring the thermal conductivity of liquids,” Review of Scientific Instruments, vol. 79, no. 6, Article ID 064902, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. D. G. Cahill and F. Watanabe, “Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K,” Physical Review B, vol. 70, no. 23, Article ID 235322, 3 pages, 2004. View at Google Scholar
  86. F. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, USA, 4th edition, 1996.
  87. D. R. Lide, CRC Handbook for Chemistry and Physics, Taylor & Francis, Boca Raton, Fla, USA, 89th edition, 2008.
  88. Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Physical Review B, vol. 76, no. 7, Article ID 075207, 5 pages, 2007. View at Google Scholar
  89. A. J. Minnich, J. A. Johnson, A. J. Schmidt et al., “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Physical Review Letters, vol. 107, no. 9, Article ID 095901, 4 pages, 2011. View at Publisher · View at Google Scholar
  90. R. J. Stevens, L. V. Zhigilei, and P. M. Norris, “Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium molecular dynamics simulations,” International Journal of Heat and Mass Transfer, vol. 50, no. 19-20, pp. 3977–3989, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. C. Duda, T. S. English, E. S. Piekos, T. E. Beechem, T. W. Kenny, and P. E. Hopkins, “Bidirectionally tuning Kapitza conductance through the inclusion of substitutional impurities,” Journal of Applied Physics, vol. 112, no. 7, Article ID 073519, p. 5, 2012. View at Publisher · View at Google Scholar
  92. Z. Y. Ong and E. Pop, “Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2,” Journal of Applied Physics, vol. 108, no. 10, Article ID 103502, 8 pages, 2010. View at Publisher · View at Google Scholar
  93. Z. Y. Ong and E. Pop, “Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2,” Physical Review B, vol. 81, no. 15, Article ID 155408, 7 pages, 2010. View at Publisher · View at Google Scholar
  94. E. S. Landry and A. J. H. McGaughey, “Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Physical Review B, vol. 79, no. 7, Article ID 075316, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. E. S. Landry and A. J. H. McGaughey, “Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,” Physical Review B, vol. 80, no. 16, Article ID 165304, 11 pages, 2009. View at Publisher · View at Google Scholar
  96. Z. Huang, J. Y. Murthy, and T. S. Fisher, “Modeling of polarization-specific phonon transmission through interfaces,” Journal of Heat Transfer, vol. 133, Article ID 114502, 3 pages, 2011. View at Publisher · View at Google Scholar
  97. W. Zhang, T. S. Fisher, and N. Mingo, “Simulation of interfacial phonon transport in Si-Ge heterostructures using an atomistic green's function method,” Journal of Heat Transfer, vol. 129, no. 4, pp. 483–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, “Extracting phonon thermal conductance across atomic junctions: nonequilibrium green's function approach compared to semiclassical methods,” Journal of Applied Physics, vol. 106, no. 6, Article ID 063503, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Mingo, in Thermal Nanosystems and Nanomaterials, S. Volz, Ed., vol. 118 of Topic in Applied Physics, Springer, Berlin, Germany, 2009.
  100. W. Zhang, T. S. Fisher, and N. Mingo, “The atomistic Green's function method: an efficient simulation approach for nanoscale phonon transport,” Numerical Heat Transfer B, vol. 51, no. 4, pp. 333–349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Laufer, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge, UK, 1996.
  102. W. A. Little, “The transport of heat between dissimilar solids at low temperatures,” Canadian Journal of Physics, vol. 37, no. 3, pp. 334–349, 1959. View at Publisher · View at Google Scholar
  103. I. M. Khalatnikov and I. N. Adamenko, “Theory of the Kapitza temperature discontinuity at solid body-liquid helium boundary,” Soviet Physics, vol. 36, p. 391, 1973. View at Google Scholar
  104. J. C. Duda, P. E. Hopkins, J. L. Smoyer et al., “On the assumption of detailed balance in prediction of diffusive transmission probability during interfacial transport,” Nanoscale and Microscale Thermophysical Engineering, vol. 14, no. 1, pp. 21–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. E. T. Swartz and R. O. Pohl, “Thermal resistance at interfaces,” Applied Physics Letters, vol. 51, no. 26, pp. 2200–2202, 1987. View at Publisher · View at Google Scholar · View at Scopus
  106. J. C. Duda, T. E. Beechem, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, “Role of dispersion on phononic thermal boundary conductance,” Journal of Applied Physics, vol. 108, no. 7, Article ID 073515, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Reddy, K. Castelino, and A. Majumdar, “Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion,” Applied Physics Letters, vol. 87, no. 21, Article ID 211908, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. P. E. Hopkins, T. E. Beechem, J. C. Duda et al., “Influence of anisotropy on thermal boundary conductance at solid interfaces,” Physical Review B, vol. 84, no. 12, Article ID 125408, 7 pages, 2011. View at Publisher · View at Google Scholar
  109. R. S. Prasher, “Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes,” Physical Review B, vol. 77, no. 7, Article ID 075424, 11 pages, 2008. View at Publisher · View at Google Scholar
  110. J. C. Duda, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, “Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials,” Applied Physics Letters, vol. 95, no. 3, Article ID 031912, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics, Krieger Publishing Company, Malabar, Fla, USA, 2002.
  112. P. E. Hopkins, “Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces,” Journal of Applied Physics, vol. 106, no. 1, Article ID 013528, 9 pages, 2009. View at Publisher · View at Google Scholar
  113. P. E. Hopkins, J. C. Duda, and P. M. Norris, “Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance,” Journal of Heat Transfer, vol. 133, Article ID 062401, 11 pages, 2011. View at Publisher · View at Google Scholar
  114. C. Dames and G. Chen, “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires,” Journal of Applied Physics, vol. 95, no. 2, pp. 682–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. G. Chen, “Diffusion-transmission interface condition for electron and phonon transport,” Applied Physics Letters, vol. 82, no. 6, pp. 991–993, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Simons, “On the thermal contact resistance between insulators,” Journal of Physics C, vol. 7, no. 22, article 009, pp. 4048–4052, 1974. View at Publisher · View at Google Scholar · View at Scopus
  117. B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Physical Review B, vol. 37, no. 3, pp. 1085–1096, 1988. View at Publisher · View at Google Scholar · View at Scopus
  118. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976.
  119. P. E. Hopkins, T. E. Beechem, J. C. Duda, J. L. Smoyer, and P. M. Norris, “Effects of subconduction band excitations on thermal conductance at metal-metal interfaces,” Applied Physics Letters, vol. 96, no. 1, Article ID 011907, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. G. Wiedemann and R. Franz, “Ueber die warme-leitungsfahigkeit der Metalle,” Annalen Der Physik, vol. 165, no. 4, pp. 978–531, 1853. View at Google Scholar
  121. G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz law at boundaries,” Applied Physics Letters, vol. 74, no. 7, pp. 953–954, 1999. View at Google Scholar · View at Scopus
  122. P. E. Hopkins, R. J. Stevens, and P. M. Norris, “Influence of inelastic scattering at metal-dielectric interfaces,” Journal of Heat Transfer, vol. 130, no. 2, Article ID 022401, 9 pages, 2008. View at Publisher · View at Google Scholar
  123. T. Beechem, S. Graham, P. Hopkins, and P. Norris, “Role of interface disorder on thermal boundary conductance using a virtual crystal approach,” Applied Physics Letters, vol. 90, no. 5, Article ID 054104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. T. Beechem and P. E. Hopkins, “Predictions of thermal boundary conductance for systems of disordered solids and interfaces,” Journal of Applied Physics, vol. 106, no. 12, Article ID 124301, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. B. Abeles, “Lattice thermal conductivity of disordered semiconductor alloys at high temperatures,” Physical Review, vol. 131, no. 5, pp. 1906–1911, 1963. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Gilat and R. M. Nicklow, “Normal vibrations in aluminum and derived thermodynamic properties,” Physical Review, vol. 143, no. 2, pp. 487–494, 1966. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Weber, “Magnon-phonon coupling in metallic films,” Physical Review, vol. 169, no. 2, pp. 451–456, 1968. View at Publisher · View at Google Scholar · View at Scopus
  128. G. P. Srivastava, The Physics of Phonons, Taylor & Francis, New York, NY, USA, 1990.
  129. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Applied Physics Letters, vol. 70, no. 22, pp. 2957–2959, 1997. View at Google Scholar · View at Scopus
  130. Z. Su, L. Huang, F. Liu et al., “Layer-by-layer thermal conductivities of the Group III nitride films in blue/green light emitting diodes,” Applied Physics Letters, vol. 100, no. 20, Article ID 201106, 4 pages, 2012. View at Publisher · View at Google Scholar
  131. D. G. Cahill, S. K. Watson, and R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals,” Physical Review B, vol. 46, no. 10, pp. 6131–6140, 1992. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Jallipalli, G. Balakrishnan, S. H. Huang et al., “Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90° misfit dislocations,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1458–1462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Applied Physics Letters, vol. 88, no. 13, Article ID 131911, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. D. E. Gray, American Institute of Physics Handbook, McGraw Hill, New York, NY, USA, 3rd edition, 1972.
  135. M. K. Farr, J. G. Traylor, and S. K. Sinha, “Lattice dynamics of GaSb,” Physical Review B, vol. 11, no. 4, pp. 1587–1594, 1975. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Kunc and R. M. Martin, “Ab initio force constants of gaas: a new approach to calculation of phonons and dielectric properties,” Physical Review Letters, vol. 48, no. 6, pp. 406–409, 1982. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Beechem, J. C. Duda, P. E. Hopkins, and P. M. Norris, “Contribution of optical phonons to thermal boundary conductance,” Applied Physics Letters, vol. 97, no. 6, Article ID 061907, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. J. C. Duda, T. S. English, E. S. Piekos, W. A. Soffa, L. V. Zhigilei, and P. E. Hopkins, “Implications of cross-species interactions on the temperature dependence of Kapitza conductance,” Physical Review B, vol. 84, no. 19, Article ID 193301, 4 pages, 2011. View at Publisher · View at Google Scholar
  139. M. Shen, W. J. Evans, D. Cahill, and P. Keblinski, “Bonding and pressure-tunable interfacial thermal conductance,” Physical Review B, vol. 84, no. 19, Article ID 195432, 6 pages, 2011. View at Publisher · View at Google Scholar
  140. L. Zhang, P. Keblinski, J. S. Wang, and B. Li, “Interfacial thermal transport in atomic junctions,” Physical Review B, vol. 83, no. 6, Article ID 064303, 9 pages, 2011. View at Publisher · View at Google Scholar
  141. L. Hu, L. Zhang, M. Hu, J. S. Wang, L. Baowen, and P. Keblinski, “Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations,” vol. 81, no. 23, Article ID 235427, 5 pages, 2010. View at Publisher · View at Google Scholar
  142. M. Hu, P. Keblinski, and P. K. Schelling, “Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations,” Physical Review B, vol. 79, no. 10, Article ID 104305, 7 pages, 2009. View at Publisher · View at Google Scholar
  143. W. P. Hsieh, A. S. Lyons, E. Pop, P. Keblinski, and D. G. Cahill, “Pressure tuning of the thermal conductance of weak interfaces,” Physical Review B, vol. 84, no. 18, Article ID 184107, 5 pages, 2011. View at Publisher · View at Google Scholar
  144. M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, “Effects of chemical bonding on heat transport across interfaces,” Nature Materials, vol. 11, pp. 502–506, 2012. View at Publisher · View at Google Scholar
  145. K. C. Collins and G. Chen, “Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces,” Applied Physics Letters, vol. 97, no. 8, Article ID 083102, 3 pages, 2010. View at Publisher · View at Google Scholar
  146. C. Monachon and L. Weber, “Thermal boundary conductance of transition metals on diamond,” Emerging Materials Research, vol. 1, pp. 89–98, 2012. View at Publisher · View at Google Scholar
  147. M. Baraket, S. G. Walton, E. H. Lock, J. T. Robinson, and F. K. Perkins, “The functionalization of graphene using electron-beam generated plasmas,” Applied Physics Letters, vol. 96, no. 23, Article ID 231501, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. E. H. Lock, M. Baraket, M. Laskoski et al., “High-quality uniform dry transfer of graphene to polymers,” Nano Letters, vol. 12, pp. 102–107, 2012. View at Publisher · View at Google Scholar
  149. R. J. Stoner, H. J. Maris, T. R. Anthony, and W. F. Banholzer, “Measurements of the Kapitza conductance between diamond and several metals,” Physical Review Letters, vol. 68, no. 10, pp. 1563–1566, 1992. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Nicklow, N. Wakabayashi, and H. G. Smith, “Lattice dynamics of pyrolytic graphite,” Physical Review B, vol. 5, pp. 4951–4962, 1972. View at Publisher · View at Google Scholar
  151. S. V. Kusminskiy, D. K. Campbell, and A. H. C. Neto, “Lenosky's energy and the phonon dispersion of graphene,” Physical Review B, vol. 80, no. 3, Article ID 035401, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano Letters, vol. 10, no. 10, pp. 3909–3913, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, “Heat conduction across monolayer and few-layer graphenes,” Nano Letters, vol. 10, no. 11, pp. 4363–4368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. A. J. Schmidt, K. C. Collins, A. J. Minnich, and G. Chen, “Thermal conductance and phonon transmissivity of metal-graphite interfaces,” Journal of Applied Physics, vol. 107, no. 10, Article ID 104907, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus